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Abstract—Near-Data Processing (NDP) has been proven useful
to accelerate Database Management Systems (DBMS) that handle
infrequently accessed data stored in slow persistent storage. A
key challenge for such an architecture is the synchronization
of host-based and NDP operations, which require fine-grained
interactions especially when the NDP device can also update
(modify) the DBMS data autonomously.

This paper introduces CINDA, the first full-stack computational
storage capable of accelerating both read and update (write)
database transactions using NDP. The proposed system relies
on a hybrid host-device interface to enable the DBMS accessing
persisted data, offloading computation to the storage device, and
coordinating concurrent device-update operations with the host-
update ones. A hybrid interface utilizes a cache-coherent inter-
connect such as CCIX or CXL for low-latency synchronization
using a shared-lock table, and PCle DMA for high-throughput
bulk I/O. We evaluated the effectiveness of the proposed approach
in a CCIX-based system by realizing an FPGA-based NDP-
capable computational storage device and customizing an NDP-
capable DBMS based on PostgreSQL to support update NDP
operations. Our full-stack evaluation using the YCSB benchmark
demonstrates that CINDA can deliver ~4.2x end-to-end speedup
when executing long-running update transactions directly on the
storage device, while the host DBMS performs frequent short
updates.

Index Terms—Near-Data Processing, Computational Storage,
CCIX, CXL, FPGA, Database Management Systems.

I. INTRODUCTION

Computational storage improves overall system perfor-
mance by moving processing closer to the data and leveraging
the higher device-internal bandwidth and parallelism vs. bot-
tlenecking host-storage external interfaces.

The NDP approach is especially beneficial if large vol-
umes of data would need to be moved to the host, such as
in long-running data analytics (read-only) transactions over
infrequently accessed data stored in cold storage [1].

Many of today’s Database Management Systems (DBMS)
workloads, however, are hybrid workloads, which have both
long analytical as well as frequent but short update (write)
transactions occurring in parallel, requiring highly efficient
synchronization between host and NDP for consistent updates.
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Fig. 1. Host-device (a) latency [2] and (b) throughput comparison between
PCle and CCIX traffic for different data lengths on PCle Gen3 x16. As both
CCIX and PCle use the same PCle physical layer [3], similar speedups are
expected in later PCle generations. Note that the CCIX latencies refer to
remote (non-local) access to the host memory, which carries extra latency for
write accesses due to the coherency protocols [2].

Although recent studies [4], [5] have highlighted the signif-
icance of update-intensive workloads in large-scale database
systems, the use of NDP techniques to improve them has been
hindered by the traditionally employed PCI Express interface
(PCIe) with its focus on high-throughput bulk transfers, instead
of low-latency synchronization.

Cache-Coherent Interconnects (CCI), such as Compute eX-
press Link (CXL) or Cache Coherent Interconnect for Ac-
celerators (CCIX), can avoid that bottleneck, as shown in
Fig. 1. In addition to efficient fine-grained synchronization,
they also enable the utilization of the cache-coherent Shared
Virtual Memory (ccSVM) programming model between the
host and NDP-device which can considerably simplify the use
of shared pointer-based data structures, especially when using
byte-addressable Non-Volatile Memory (NVM) as persistent
storage.

Utilizing the NDP technique in a modern database system
that works under hybrid workloads poses multiple challenges.
First, executing long-running transactions on the device con-
currently with update transactions on the same record on the
host leads to write/read conflicts. To address this, [1], [6]-[9]
proposed a snapshot-based mechanism to ensure transaction
consistency for executing read-only transactions on the device.
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Second, executing transactions including update operations on
the device causes write/write conflicts with the concurrent
transactions on the host. Addressing this issue requires low-
latency cache-coherent host-device interactions. Due to its
long latencies, PCle is unsuitable for this purpose [10], [11].

To tackle this challenge, [2], [12] proposed employing a
CCI, namely CCIX, as a low-latency synchronization mecha-
nism between the host and device to coordinate the execution
of concurrent transactions on the host and the device. These
prior works focused mainly on the low-level synchronization
mechanism to realize a lock table that could be efficiently
shared between host and device. However, they focused on
evaluating synchronization in isolation, without fully inte-
grating these mechanisms into the on-device architecture or
software-side DBMS, largely due to the absence of a suitable
hybrid host-device interface. Thus, they did not address how
to execute NDP update transactions near physical data in the
presence of concurrent host-side update transactions. Allevi-
ating this limitation is essential for building and evaluating an
end-to-end updateNDP-capable system.

This paper introduces CINDA, an FPGA-based compu-
tational storage device capable of autonomously executing
database operations with both read and update (write) oper-
ations near physical data on the NDP device. The proposed
storage, along with an updateNDP-capable DBMS (a modified
version of neoDBMS [1], [6]), in turn based on PostgreSQL
12, forms a complete end-to-end system architecture.

The contributions of this paper are as follows:

(i) UpdateNDP-capable computational storage based on a
novel H-NSI: We propose a computational storage that
uses our Hybrid Native-Storage Interface (H-NSI) to en-
able the DBMS to offload database operations, including
read/update operations, to the device. H-NSI combines
the traditional Native Storage Interface (NSI) advantages,
such as the removal of legacy abstraction layers between
the host and storage (e.g., file systems) [1], [6], with the
capability to flexibly switch between PCle bulk transfers
and CCI synchronization messages in the host-NDP de-
vice interface.

(i1) A novel hardware-accelerated NDP engine integrating a
low-latency shared-lock handler: We propose a new NDP
engine capable of processing both read and update oper-
ations near physical data on the storage. The engine uses
a novel shared-lock handler to guarantee transactionally
consistent execution of the update operation. In addition,
the engine autonomously executes NDP operations and
leverages the byte-addressability of the NVM storage
and shorter internal-device latency to improve overall on-
device execution time.
Full-stack end-to-end evaluation with an industrial-
strength DBMS: We perform in-depth benchmarking of
our full-stack hardware-software architecture when exe-
cuting update-intensive workloads, including both long-
running as well as high-frequency update transactions,
from the YCSB benchmark.

Note that this paper focuses on a detailed description of
the hardware architecture and hardware/software interface
for processing database update/modification operations near

(iii)

physical data within update environments. The database-side
of the project cannot be discussed here in detail due to space
reasons, it has thus been covered in dedicated publications:
[1], [6], [8] focused on processing read-only operations near
physical data, and [2], [12], which introduced a new stand-
alone locking mechanism, but without integrating it into the
NDP engine and the software-sidle DBMS. Both of these
integration are addressed in the current paper.

We begin with a brief introduction to the host-device
interface technologies, the DBMS, and discuss related works
in Sec. II. Then, we present the CINDA system by explaining
our updateNDP-capable DBMS in Sec. III-E, followed by H-
NSI in Sec. III-B, and our updateNDP-capable computational
storage in Sec. III-D. The end-to-end evaluation setup and
results are presented in Sec. IV, before we conclude in Sec. V.

II. BACKGROUND AND RELATED WORK
A. Cache-Coherent Host-Device Interface Technologies

PCI Express (short: PCle) is a dominant interface for
connecting storage devices/accelerators to the host and is
optimized for transferring large chunks of data to reach
maximum throughput. Even though, PCle supports optional
advanced features like Address Translation Service (ATS) and
Page Request Interface (PRI), however, most available devices
do not support cache coherency. This is also due to the longer
PCIe latencies which makes implementing cache-coherence
protocol over PCle impractical [10], [11]. In the following,
we will briefly introduce CCI technologies, i.e., CCIX and
CXL, which enable PCle-based host-device cache-coherency,
before discussing our design choices.

1) Cache Coherent Interconnect for Accelerators (CCIX):
CCIX [3] was the first truly multi-vendor standard that extends
PCIe to support data coherency between end-point devices.
This standard was introduced by the CCIX Consortium in 2016
and is supported on ARM- and x86-based CPUs. In CCIX, the
host and end-point devices interact with one another in a non-
CPU-centric manner, allowing different heterogeneous devices
(e.g., CPUs and accelerators) to share data coherently. The
CCIX interconnect enables multiple devices to share data in a
cache-coherent manner and to use a common virtual address
space. This requires that the host/device owning the physical
memory can act as a Home Agent (HA) to provide cache-
coherent accesses to it. In turn, a remote device employs a
Request Agent (RA), along with a local system cache, to
communicate with an HA for coherent access to the memory
managed by the HA. In this work, we rely on the simple direct-
attached CCIX topology [3], where the FPGA implements an
RA and is directly connected to the host providing the HA.

2) Compute eXpress Link (CXL): CXL [13] is the newer
multi-vendor standard which was introduced in 2019 by CXL
Consortium. The CXL standard defines CXL.io, CXL.cache,
and CXL.mem sub-protocols for device enumeration and con-
figurations, sharing host memory in a cache-coherent manner,
and accessing on-device memory, respectively. The CXL pro-
tocol defines three device types. Type-1 devices use CXL.io
and CXL.cache for cache-coherent host-device accesses and
PCle-DMA transfers (e.g., smart NICs) but cannot expose
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device memory to the host. Type-2 devices (e.g., GPGPUs,
FPGAs) use CXL.io, CXL.cache, and CXL.mem, allowing
cache-coherent accesses, PCle-DMA transfers, and mapping
device memory to the cacheable system memory. Type-3
devices use just CXL.io and CXL.mem for memory expansion
without cache-coherency.

In contrast to CCIX, CXL’s end-point devices are connected
to the host in a CPU-centric manner, where the CPU "primar-
ily" manages coherency when using its HA. The end-point
Type-2 device, equipped with a Device Coherency Engine
(DCOH) and system cache, allows its local operations to per-
form non-local cache-coherent access to the remote memory
owned by the host.

3) Choice of CCI: CCIX vs. CXL: The hardware reported
here employs CCIX as a CCI between the NDP device (i.e.,
FPGA) and host. The CCI enables both parties to share data in
a coherent manner, and use a common virtual address space.
In both CCIX and CXL (i.e., CXL.cache), the interconnects
and system caches automatically maintain the coherency of
accessed data with the remote memory without the software
driver being involved in data management.

The more modern CXL standard defines a CCI capability
similar to CCIX, in so-called Type-2 & 1 devices that employ
the sub-protocol CXL.cache. However, even at this point in
time (November 2024), only few CXL.cache-capable devices
and hosts have become commercially available.

Prior studies that report on CXL either employ simulation
or discuss only Type-3 devices [14], [15]. These devices use
CXL.mem sub-protocol and do not support data coherency and
virtual address translation that is equivalent to CCI-capabilities
provided in CCIX. In addition, latencies, throughput, or similar
characteristics reported in these studies [14], [15] are in fact
not comparable to the CCI results presented here, as they only
consider CXL.mem for memory expansion without utilizing
CCI capabilities.

Since we were determined to benchmark our approach
on actual hardware, we were forced to employ CCIX for
our evaluation. The ARM Neoverse N1 System Development
Platform (N1-SDP), which has been used in this study as
a host, is the only host that is actually qualified to provide
CCI over a CCIX-enabled PCle slot. However, looking ahead,
from our understanding of the CXL specifications, we expect
that our results will also fully apply to current systems using
CXL as CCI, once CXL.cache-capable NDP devices and hosts
become more common in 2024/2025.

B. DBMS Background

1) Workloads: A transaction is a sequence of database
operations that must be executed in a single logical unit of
work. A database workload refers to a predefined and param-
eterized collection of transactions that operate on a dataset
including multiple database objects, each of which represents
a database table. Modern DBMSs operate under two types
of workloads that can be combined in hybrid workloads [16]
and weighted arbitrarily: long-running analytical transactions
and frequent but short transactions. The former primarily
involves queries that necessitate significant data transfer from

persistent storage and require access to large portions of cold
data. The latter primarily involves simple but frequent and
short combinations of read, write, or update operations. Prior
work (Sec. II-C) has shown that executing read-only long-
running transactions on the device, while handling frequent but
short transactions on the host, improves system performance
by reducing data movement and memory pollution. CINDA
takes this approach further by targeting the execution of long-
running update/write transactions on the device, alongside
frequent but short transactions executing on the host. A key
limitation that hinders execution on the device is the traditional
PCle, which is optimized for high-throughput bulk transfers.

2) MVCC and its Record Version Organization: Concur-
rency control techniques enable DBMSs to guarantee the
transactional consistency of concurrent operations while ex-
ecuting concurrent transactions that read/write to the shared
data entity, which might cause inconsistencies or incorrect
results. A Multi-Version Concurrency Control (MVCC) [17],
[18] is a well-known scheme that leverages the properties of
modern hardware and is suited for hybrid workloads. In an
MVCC-based system, every modification to a record (e.g.,
insert/update) results in a new version of that record, so-called
record version, which is stored out-of-place.

In MVCC-based DBMSs, each record version is an inde-
pendent entity with a creation, an invalidation timestamp, and
a pointer to its predecessor or successor. Each record version is
identified by these timestamps, the transaction identifier (ixID)
from the calling transaction which increases monotonically,
and a logical pointer, forming a version chain. The process
of determining record versions for the called txID, known as
version visibility checking, is vital for query executors, whether
operating in a host-side DBMS or within the NDP engines in
the proposed architecture (as detailed in Sec. III-E).

There are two primary methods of organizing version chains
[19]: Oldest-to-Newest (O2N) and Newest-to-Oldest (N20).
In the O2N, the head of the version chain points to the oldest
record version, facilitating long analytical transactions, while
in the N20O, favoring frequent but short transactions, it points
to the newest version. In addition, the N2O facilitates record
updates by eliminating the need for in-place invalidation of
the previous record version, which reduces memory access
and computational load. The core DBMS used in this study
relies on the N20 organization and so-called VID-mapping (as
explained in Sec. II-B4) to facilitate synchronization, record
version invalidation, and shared-state handling.

3) DBMS Record and Page Format: To perform visibility
checking, query executors require each record to include
visibility information stored in its header (Fig. 2-a). Upon
creation, records are placed within a ’page’. Among different
page formats, the N-ary Slotted Model (NSM) page format
is a widely used page format in relational databases and is
considered optimal for handling modifications. This format, as
it stores all attributes of a single record contiguously within a
page, is well suited for update-intensive workloads that often
require access to all record attributes. The core DBMS in
this study (as detailed in Sec. I1I-B4) employs an NSM page
format, as shown in Fig. 2-c. A page consists of a header, slot
pointers, and records. Slot pointers, indicating each record’s
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Fig. 2. (a) Record format, (b) recID format, and (c) N-ary slotted Model
(NSM) page format used in this study.

offset and length inside the page, are placed after the page
header and filled from the top, while records are filled from
the bottom. Page sizes, determined by DBMS configuration,
generally range from 2KiB to 32KiB.

4) Update-Aware NDP DBMS: neoDBMS [1], [6], [8] is
an update-aware NDP DBMS (c.f. Sec. II-C) capable of
offloading just read-only NDP queries to the storage and
executing them in the presence of the concurrent read and
write (update) operations on the DBMS software-side on the
host. In this work, we extended the core neoDBMS further,
as explained in Sec. III-A, now enabling it to execute a query
with write (update) operations directly on the storage device,
alongside ongoing write (update) operations on the host.

In the following, we first explain how the DBMS manages
persisted data. Then, we describe how the DBMS uses the
shared-state buffer to guarantee transactional consistency in
the execution of read-only NDP operations.

a) Data Management: In neoDBMS, all persisted data,
including records, VID-mapping tables, and L2P-mapping
tables, are organized into pages. To provide an entry point
for each version chain [1], [6] a Virtual ID-mapping (VID-
mapping) table is utilized. This table contains unique VIDs
for all record versions in the version chain, with each VID
linking to the latest record version in its chain. The reclD
for each record contains a logical page number (Ipn) and slot
number of the record on the page (slot#), as shown in Fig. 2-
b, enabling the executor to look-up and calculate the physical
address of a record.

The VID-mapping table is hierarchically structured in three-
page layers: vidBase — vidVector — vidPage. The vidPage
pages contain the actual VID information, and the vidVector
pages hold the physical addresses of these pages. The vidBase
pages hold the physical addresses of vidVector. Therefore,
the NDP engine must read through the first two-page layers
(vidBase and vidVector) before reaching the vidPage layer.
The L2P-mapping table is stored similarly in two-page layers:
[2pBase — I2pVector. The I2pVector pages contain the actual
VID information, while [2pBase pages hold the physical
addresses of these pages.

b) Shared-State Buffer: The shared-state buffer is a small
(=100KiB) memory region that tracks all differences between
the persisted data already moved to persistent storage and the
most recent data from ongoing processes on the DBMS. The
DBMS propagates pages from this buffer to the actual storage
in two modes. In the first mode, called flush & append, the
buffer regularly flushes full pages to the persistent storage
as flushed pages. In the second mode, called pass-along &
cache, even not-yet-full pages, containing data of still-in-
progress host transaction, are flushed to the storage before each
NDP invocation, allowing the read NDP operations to proceed
independently without requiring coordination with the host.
Note that executing update operations as NDP on the device
requires a synchronization mechanism, detailed in Sec. III-C.

C. Related Work on Using NDP

Previous studies on the utilization of NDP techniques to
improve the overall performance of database applications can
be categorized into three categories.

Studies in the first category primarily focused on scenarios
involving read-only workloads. [20]-[22] as a pioneer in lever-
aging the higher I/O-bandwidth of smart storage, proposed
offloading a portion of data processing tasks to these storage
devices. Later, JAFAR [23], Biscuit [24], PolarDB [25] also
explored the use of the NDP technique for accelerating size-
reducing database operations. While these studies improved
DBMS performance in read-only settings, it’s important to
note that write/update operations have become increasingly
important in large-scale systems, such as Twitter/X [5] and
Facebook/Meta [4]. Similarly, DBMS operating under hybrid
workloads must handle not only read but also write operations.

Studies within the second category have suggested the use
of NDP techniques for DBMS systems operating in a hybrid
workload setting. In [1], [6], [8], the authors proposed offload-
ing read operations (form a transaction) to the storage device
while allowing concurrent transactions to update data on the
host. The system proposed uses a snapshot-based mechanism
to ensure transaction consistency (update-aware NDP). This
approach has been adopted later on by [9], which requires
a host-side pre-processing step for snapshot construction,
yielding increased data movement and write amplification.
Even though [9] processes read operations relatively close
to the persistent storage, all data access requests still pass
through PCle. This latency remains a limiting factor, prevent-
ing utilization of low latency on-device access. Although these
approaches improve overall system performance by processing
long-running read transactions on the device, it lacks support
for executing transactions with update operations near the
physical data.

Studies in the third category suggested techniques for
processing transactions with update/write operations close
to the data. [2], [12] introduced to use of a low-latency
synchronization mechanism through CCIX between the host
and storage device to prevent write/write conflicts during the
execution of update operations on the device. While that
method has demonstrated success in delivering comparable
latency to large-scale NUMA systems, it primarily focuses on
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the synchronization mechanism and does not integrate it into
the NDP DBMS stack or address storage management.

In this study, the CINDA system ensures transaction consis-
tency even for NDP updates in the presence of the concurrent
updates on the software-side DBMS.

III. PROPOSED ARCHITECTURE

This section describes our new CINDA architecture. It
enables a DBMS to execute queries with both read and
write (update) operations on the computational storage system,
while guaranteeing transactionally consistent execution with
concurrent transactions on the host. Fig. 3 shows the overall
overview of the CINDA system architecture, comprising an
updateNDP-capable DBMS (at the top) and computational
storage (at the bottom) that are interacting via H-NSI.

The H-NSI (in the middle) is a key element in the proposed
system, as it enables the exchange of fine-grained, low-latency
coherency messages between the host and the computational
storage device. The combination of this low-latency inter-
face with the conventional PCle interface forms the essential
infrastructure for the H-NSI implementation. The flexibility
offered by H-NSI, i.e., switching between low-latency and
high-throughput traffic, enables the implementation of a syn-
chronization mechanism between host and device executors,
used when executing update operations to prevent unexpected
write/write conflicts. The integration of the synchronization
mechanism into the hardware-side (i.e., NDP engine) and
DBMS software-side of the system, along with the novel H-
NSI, forms an end-to-end system capable of executing the
queries with not only read but now also write operations.

This section presents different elements of the proposed
system, beginning with introducing an updated NDP-capable
DBMS. Then, we continue with the H-NSI and shared-lock
mechanism. Finally, we provide detailed information on the
micro-architecture of the proposed computational storage and
NDP engine, and discuss the integration of the components.

A. UpdateNDP-Capable DBMS

Fig. 3-a shows the logical overview structure of the
updateNDP-capable DBMS that enables offloading update
operations to the NDP engine within the storage device
through the H-NSI. This DBMS is based on neoDBMS (c.f.,
Sec. 1I-B4). The system comprises several key components
as follows. The query executor is interacting with the user
interface and determines the distribution of operations between
the host and the device executors. The host executor is a query
engine on the host and manages the execution of operations on
the software-side of DBMS. The NDP scheduler is responsible
for pushing down NDP operations to the NDP engine(s)
on the computational storage. The lock manager provides
a synchronization mechanism between host executor(s) and
NDP engine(s), see Sec. III-C for further details.

Enabling the host-side DBMS to fully support update op-
erations performed as NDP requires only few, highly targeted
changes: The shaded modules in Fig. 3 highlight the host-
side shared-lock table support with 200 Lines Of Code (LoC),
the NDP scheduler with an additional 150 LoC, and the host

—  (a) UpdateNDP-Capable DBMS (neoDBMS)  —

\ Query executer |
Buffer

Host executor
Host lock manager
manager NDP scheduler
g 1:[

Shared-state buffer ’ Shared lock table
|

\ Native storage manager

N I+
H | ] 1 .
H (b) H-NSI  Data Path NI?F'I Path Synchronization Path
11
L2 | K 2 |
‘ DMA engine }0:0{ NDP engine ‘
Persistent storage (NVM)
! | New pages &
Flushed pages ! Cached pages ! AVID

(c) UpdateNDP-Capable Computational Storage

Fig. 3. Logical overview of the CINDA system architecture including (a)
UpdateNDP-capable DBMS at the top, (b) H-NSI in the middle, and (c)
Computational storage designed to manage both read and update NDP
operations at the bottom. Note that black, blue, and red arrows indicate data
path, NDP path, and synchronization path within the H-NSI, respectively.
Besides H-NSI, shaded areas indicate extended/modified modules compared
to [6], [8].

lock manager, which extends DBMS-tuple locks to support the
locking mechanism with an extra 50-100 LoC, relative to the
update-aware neoDBMS. In the following, we explain how the
native storage manager partitions the persistent storage. Then,
we discuss what functionality the NDP scheduler must provide
to the NDP engine to enable the interpretation of database
pages and records in situ.

1) Persistent Storage Partitioning: The native storage man-
ager logically divides the persistent storage into multiple
partitions as shown in Fig. 3-c. The first partition stores
flushed pages of all types, including NSM, VID-mapping,
and L2P-mapping pages. The second partition holds cached
pages which are temporarily transferred to the persistent
storage (i.e., pass-along & cache) before starting an NDP
operation, are only used by the NDP engine, and will be
discarded after execution. The third partition is dedicated to
pre-allocated memory for the NDP engine to store new pages,
e.g., result records of an NDP operation, or holding logging
information, which will be transferred to the host after NDP
engine execution (specified by AVID in Fig. 3-c).

2) In Situ Data Interpretation: To facilitate transaction exe-
cution as NDP on the device, the NDP scheduler must provide
all required information to the engine. This information is
required for navigating and interpreting records and pages. It
is forwarded to the device during the NDP invocation and
includes: MVCC-related information such as txID, physical
address of vidBase, address translation information (physical
address of L2PBase), NDP operation type and addresses to
the pre-allocated memories, shared-lock handler configuration
(more details in Sec. III-C), and NDP engine optimization
parameters such as the number of active engines.

B. Hybrid Native Storage Interface (H-NSI)

The native storage interface eliminates legacy abstraction
layers and block-device interfaces between the storage and the
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host, enabling the DBMS to directly control the persisted data
and the device hardware [1], e.g., by invoking the NDP engine.
While this interface is well-suited for read-only transactions
[1], [8], executing transactions that involve update operation
requires fine-grained, low-latency synchronization between the
host and storage executors to ensure transactional consistency
[2], [12]. To address this challenge, we introduce the Hy-
brid Native Storage Interface (H-NSI) that enables DBMS to
seamlessly transition between high-throughput PCle transfers
and low-latency CCI messages. H-NSI enables the DBMS to
manage the persisted data directly on the device using the data
path, offload NDP operations via the NDP path, and handle
low-latency synchronization with a synchronization path. In
the following, we first outline these paths and then describe
the steps the software-side DBMS takes to invoke and validate
an offloaded NDP operation.

1) Data Path: In a traditional system architecture, the
DBMS employs READ/WRITE_PAGE commands via the file
system (for instance, ext4) and block device to read/write
data from/to the persistent storage device. However, with the
removal of these intermediate layers in the CINDA system,
these commands have been replaced with READ_PAGE and
WRITE_PAGE commands for directly reading from and writing
to the physical persistent storage device (here: non-volatile
memories, NVM), respectively, as shown in Fig. 3-b.

2) NDP Path: To enable control of the NDP engines on the
device by the DBMS, we introduced NDP command and NDP
response operations. The NDP command performs NDP and
carries out in-situ data interpretation, as detailed in Sec. I1I-A2.
The latter returns the status of the NDP engine to the host.
This is performed by raising an interrupt from each engine
upon completion of execution, and then accessing the engine
control registers to read the actual status updates.

3) Synchronization Path: In the CINDA system, we have
enhanced the native storage interface by integrating a syn-
chronization path as shown in Fig. 3-b. This addition allows
for seamless switching between bulk PCle-DMA transfers
and synchronization traffic via the low-latency CCI. The
CCI enables the CClI-capable computational storage device
to access the host’s memory and virtual address space while
automatically maintaining coherency (c.f. Sec. II-A1l). Such
functionality enables the updateNDP-capable DBMS to ef-
ficiently manage concurrent update transactions through the
newly introduced lock handler mechanism (see Sec. III-C).

4) NDP Invocation & Validation: Offloading and executing
an operation on the NDP device involves a four-step process.
In the first step, the NDP scheduler requests the buffer manager
to pass-along & cache (c.f. Sec. 1I-B4b) pages, even not-yet-
full pages, from the shared-state buffer to the persistent storage
using the data path commands. It also requests the native
storage manager to allocate space in the persistent storage
for the new pages. In case of the NDP operation runs out
of space, it halts the execution and notifies the software-side
DBMS to allocate more storage. Then, it requests the lock
manager to provide the virtual address of the shared-lock table
located in host memory that is shared between the host and the
device through the synchronization path. Note that the DBMS
allocates this shared-lock table during DBMS initialization.

In the second step, the NDP scheduler invokes the engine(s)
by using the NDP path commands. This involves configuring
the NDP engine by writing its control registers. In the third
step, once the operation execution is complete, the NDP
engine notifies the NDP scheduler of the completion via the
NDP path. In the fourth step, after completing the NDP
transaction, the software-side of DBMS verifies the validity
of the offloaded transaction’s execution. To this end, it reads
AVID, which contains the recIDs of the update records, from
persistent storage and checks for write/write conflicts with
concurrent transactions on the host that might occur during
the execution of the offloaded operation. If the validation is
successful, the DBMS updates the VID-mapping table with the
new record’s reclD and releases the locks associated with these
records. If the validation fails, the DBMS does not update
AVID, and the newly created records are disregarded.

C. Shared-Lock Handler Mechanism

A write/write conflict occurs when concurrent transactions
from both the host and the device attempt to update the
same record. Two approaches can be considered to address
this conflict: pessimistically locking the entire table before
the NDP operation, or using an optimistic approach. While
locking the table eliminates the conflicts, it severely limits
system concurrency by blocking host-side updates. In contrast,
for the optimistic approach, transactions proceed under the
assumption of “no conflicts” and validate results afterwards
upon completion of the NDP operation. Even though this
approach enables concurrent host updates, it faces challenges
of its own, such as potential starvation of read-intensive
transactions [26], wasted resources if validation fails [27], and
overhead from transferring NDP operation sets from storage
for the validation.

To address this quandary, we employ a fine-grained lock-
ing mechanism called shared-lock table as a synchronization
mechanism between the host and device transactions. This
approach allows the host executor or NDP engine to lock
records individually before updating them without blocking the
entire table. In this manner, we increase system concurrency by
enabling concurrent host updates and reduce the likelihood of
host or NDP transactions being aborted (see Sec. II[-B4). The
shared-lock table, realized as a hash table, assigns the right-to-
modify-record permission to a transaction, either on the host or
device. This permission is granted to a transaction that placed
a lock in the table if no other transactions are modifying the
same record. This prevents simultaneous modifications of the
same record by different transactions.

Using a hash table for synchronization and locking, a widely
used data structure in DBMS for locking tables, provides
fast lookup and allows high parallelization compared to other
structures, e.g., B-trees. In addition, the lock table can be
configured (as explained in Sec. III-C2c) to perform a suit-
able trade-off between CCI-shared memory size and collision
frequency. Note that this table is allocated in the host memory
and only the virtual address of the hash table is passed to the
hardware-side module during NDP invocation. In addition, any
modifications made to the table are automatically synchronized



IEEE TRANSACTIONS ON COMPUTERS

(a) Lock Handler Architecture
Control signal 5
""" from engine (AXI-MIN)| Control unit [ Sh-mem-addr. || Queue size ‘
Q
c
G ut CAS (request]
22, Hash P (request) Tecoll
Q8 function -
gg g % get CAS (response) }(.:
— 5 © 1
i l Does the hash queue contain the value (txID)? ‘
L yes no
7 | Is it slot 07 | | Is lock placed? |
< yes § noy
2 |8% l Is it slot 07 ‘ l Are all slots full?
a8 o &
c c
6% 8 8 b
e~ 7} Fmd next
SN D [ koo ) o oo Y Wl free slot
txID that modifies a record
R1 [Already queued: Granted ‘ Key x Lockmg Queue (thD)

viD(r1) |} H
VID(r2) [txID(d1) I | txID(h3)

” e T Lock release
Placed: Not granted (waiting) 1 1 (shift to left)

Queue full: Abort viD(m) [txiD(hg) | -+ [ - |
(b) Lock-Request Responses (c) Shared-Lock Table

R2|Already queued: Not granted (waiting)

R3|Placed: Granted
R4

R

[

Fig. 4. (a) The architecture of hardware support for the shared-lock mecha-
nism in the CINDA computational storage system and its responses (b), along
with a logical overview of the shared-lock table (c). i: Interface to the NDP
engine. 1: Interface to the CCI bus.

using atomic operations via the H-NSI’s synchronization path,
which in turn employs CCI atomic updates, as explained in
the following.

The proposed mechanism requires support from both the
software-side of the DBMS and the hardware-side of the
computational storage.

1) DBMS Software-Side Support: The lock manager on
the DBMS is responsible for allocating the table during
DBMS initialization and managing lock requests from the host
executor. As shown in Fig. 4-c, each hash table entry consists
of the key and a small queue as value. The key is the VID of the
record, which is unique for all record versions, and the queue
contains the txID(s) of the transaction(s) wanting to update
that record. The head position in the queue gains the lock
for updating the record. Upon completion of an update, the
queue shifts to the left, granting the lock to the next requesting
transaction. For example, in the table’s second row from Fig.
4-c, the VID(r2) is the key of Record Number 2. Currently,
Transaction 1 from the device (txID(d1)) is updating this record
as its lock holds the head position, while Transaction 3 from
the host (txID(h3)) is waiting for permission to update the
record.

2) Computational Storage Hardware-Side Support: The
lock handler module, as shown in Fig. 4-a, implements the
mechanism as hardware within the computational storage. It
is integrated into the NDP engine, managing lock requests
to the shared-lock table through the synchronization path of
the H-NSI. The details of this integration are explained in
Sec. III-D. Here, we explain how the lock handler processes
lock requests from the NDP engine. Then, we describe its CCI
and NDP interfaces and configuration registers.

a) Lock Request & Response: Incoming lock requests to
the lock handler include the VID as the hash key and the NDP
transaction txID as the hash value. The NDP engine receives
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Fig. 5. General overview of the CINDA including (a) CCI-enabled host, (b)
CClI-enabled physical interfaces, and (c) CCI-enabled computational storage.

different types of responses based on the lock’s status and
checks against concurrent transactions. These responses are
labeled as R1, ..., R5 as shown in Fig. 4-b.

b) Interfaces: The lock handler receives the lock request
from the NDP engine and responds to it via a stream interface,
indicated by black arrows and { in Fig. 4-a. The interface
connected to the CCI is highlighted in red arrows and f. It
allows the lock handler to interact with the synchronization
path of the H-NSI by executing CCI atomic compare-and-
swap (CAS) operations to access the host-side memory, which
holds the actual locks. Using atomic CAS operations ensures
locking without race conditions.

c) Configurations Registers: A control interface enables
the NDP engine to configure control registers during initial-
ization. Shown by green boxes in the figure, the sh-mem-
addr register specifies the virtual address of the start of
the shared-lock table between host and device. This address
is dynamically generated following the initialization of the
DBMS and passed to the NDP device. The queue size register
specifies the maximum number of slots in each hash table
entry, corresponding to the maximum number of concurrent
transactions that wait to update the same record. If concur-
rent transactions exceed the queue size, the engine triggers
abort () as detailed in Sec. III-E.

D. UpdateNDP-Capable Computational Storage

Fig. 5 shows the underlying infrastructure of the CINDA
system architecture, highlighting the computational storage,
the host, and the interconnect with CCI capabilities, such as
CCIX or CXL. The host includes a "CCI-HA" (Home Agent),
which extends its virtual address space to offer a coherent
address space over its physical memory. Alternatively, the
device is equipped with a "CCI-RA/DCOH" (Request Agent in
CCIX devices and Device Coherency Engine (DCOH) in CXL
type 2 devices) that enables the internal module to perform
read/write operations to the coherent address space owned by
the HA. The coherency of data within these address spaces is
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ensured by the CCl-enabled interconnect along with the CCI-
HA and CCI-RA/DCOH.

Note that the CCI is beneficial for small transfers. However,
accessing a record directly from the persistent storage via CCI
requires multiple small transfers (c.f., Sec. II-B3) and involves
extra buffer management overhead, as DBMS buffering strate-
gies typically use 8 KiB page sizes. Therefore, the resulting
access latencies and throughput quickly exceed those of page-
sized PCle-DMA transfers. In addition, using CCI for reading
and writing data to persistent storage is sub-optimal due to
the virtual-to-physical address translation overhead associated
with CCI accesses [2]. Our proposed architecture leverages
CCI for low-latency access to the shared lock table while using
PCle-DMA transfers for high-throughput data movement.

Fig. 5-c shows the proposed computational storage architec-
ture, highlighting components for CCI and PCle-DMA traffic
in pink and blue, respectively. This architecture integrates
multiple modules: host-device interconnect, persistent storage,
arrays of NDP engines, and various peripheral components.
The DMA engine is responsible for transferring data from
the host’s physical memory to the persistent storage. The
PCle AXI-MM bridge translates PCle-DMA traffic to AXI-
MM format. The storage includes three distinct AXI-MM
buses. The data bus provides a means of connecting NDP
engines, DMA engine, and persistent storage. The control bus
provides the host with the ability to control internal hardware.
Lastly, the CCI bus allows the NDP engines to exchange CCI
messages/requests with the host via the system cache in the
CCI-RA/DCOH component, through the CCI interface.

E. NDP Engine Processing Pipeline

To enable NDP execution of both read and update operations
on the computational storage device, we employ an array of the
NDP engines designed with two aims: (i) Database operations
should be executed without causing any write/write conflict;
(ii) Database operations should be executed as an intervention-
free process on the device. To achieve the aim (i), we em-
ploy the shared-lock table to synchronize concurrent database
operations that could modify a record. To achieve the aim
(ii), the engine starts processing the latest created records that
have not been flushed to the storage, then continues processing
already-flushed records residing on the persistent storage. As
NDP engines are fully cognizant of details of the DBMS
data formats, they can perform in-situ data interpretation, and
execute autonomously from the host.

In the following, we will explain the processing pipeline
of an NDP engine in six stages. Then, we will discuss the
preloader and offloader modules, which improve the per-
formance of the NDP engine using scratchpad memories.
Note that the implementation of the processing pipeline using
hardwired modules and soft-core is detailed in Sec. IV-Al.

1) VID-Processing: The initial stage in the execution of an
NDP transaction is to extract the recID from the VID-mapping
table (Fig. 6-S1). This is achieved through a three-page layers
structure (c.f. Sec. II-B4a). First, the engine loads the vidBase
page. Then, it loads the vidVector page using the extracted
value from the previous step. Finally, it loads vidPage from
storage and forwards each reclD to the visibility checker stage.
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Fig. 6. The NDP engine processing pipeline with six stages: (S1) VID-
Processing, (S2) Visibility checker, (S3) Filter, (S4) Lock-handler, (S5)
Record-builder, and (S6) Page-builder.

2) Visibility Checker: This stage is responsible for finding
a record version that is visible to the NDP operations txID.
As shown in Fig. 6-S2, after receiving recID (@), which
includes the logical page number (Ipn) and slot number (slot#)
of the record in the page, the visibility checker function uses
getPPN (1pn) function to determine the physical address
of the page containing the record. After resolving the page’s
physical address, it reads the slot pointer from the page header
to determine the offset and length of the record. Then, the
engine calculates the physical address of the record in the
persistent storage. Finally, it accesses the record to check
whether the record belongs to the transaction call time stamp
by checking the visibility information on the header of the
record and txID. In case of a successful comparison (@), it
then forwards the physical record address to the filter stage.
In case of unsuccessful comparison (@), the visibility checker
function must retrieve the previous version of the record,
known as the predecessor record, and check whether that
is visible to the currently running transaction. The function
achieves this by extracting the recID of the predecessor record
from its own header. The function continues to follow the
version chain until it finds a record version that is visible to the
currently running transaction to the NDP operation. Note that
the first record version on the version chain has no predecessor
record, thus indicating the end of the version chain. The
getPPN (1pn) module is responsible for translating an Ipn to
a physical page number (ppn). It uses the L2P-mapping table
that resides in the persistent storage and is shared between all
NDP engines.

Note that the byte-addressability access offered by emerging
NVM storage allows the engine to read exactly the required
amount of data, unlike page-addressed storage systems such
as NAND Flash, which read the entire data block. This feature
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of the underlying NVM storage improves engine performance
and reduces read-amplification, where the processing element
retrieves more data than needed. The latter would lead to both
increased transfer times, as well as the need for larger on-chip
buffers.

3) Filter: This stage is responsible for applying filter cri-
teria to the visible record as shown in Fig. 6-S3. To this end,
first, it reads the visible record and extracts selected attribute(s)
from the records. Then, it checks whether the record fulfills
the filter condition indicated in the NDP command operation.
If the condition is true, the record is forwarded to the shared
lock-handler stage (@). If not, it is discarded and the stage
notifies the VID processing stage to provide a new reclD.

4) Shared Lock-Handler: This stage is responsible for
checking whether the current record could be modified by
other concurrent operations on the software-side DBMS as
shown in Fig. 6-S4. To this end, after receiving a lock request,
it forwards it to the Lock handler (more details in Sec. III-C)
module (®). If the lock handler grants the lock, the record
information (e.g., physical record address) will be forwarded to
the record-builder stage (®). If the lock is not granted and the
shared-lock table’s queue is not full, the engine continuously
checks the lock’s status until it is granted. If the queue is
full, the NDP engine terminates the transaction by calling
the abort () function (@). This function triggers an abort
signal, which is then recorded in the shared status memory on
persistent storage. This memory is accessible to all concurrent
NDP engines. These engines regularly check for the abort
signal before processing new reclDs. If they detect the abort
signal, their processing is halted, and they notify the DBMS
software of their status. Consequently, the software marks all
new pages created by the NDP engines as discarded.

5) Record-Builder: This stage is responsible for building
a new record reflecting the modifications of the update. After
receiving a request for modifying attribute(s) of the record (in-
dicated in the NDP command operation) it makes a copy of the
current record version from the persistent storage into the local
memory to be used as a new record version. Then, it starts to
build a new record version by preparing a record header of the
copied record with updated visibility information and a pointer
to the predecessor record holding the current data. Finally,
it modifies the targeted attributes in the new record versions
and forwards it to the page-builder module (®). Note that in
MVCC, all updates lead to new record versions being created,
no updates are performed on the current data. The engine logs
the recIDs of the new record version in the persistent storage
for logging as AVID that allows the software-side of DBMS to
validate the transaction’s execution to maintain transactional
consistency (c.f. Sec. III-B4).

6) Page-Builder: This stage is responsible for building a
new NSM page and storing it to the NVM persistent storage,
as shown in Fig. 6-S6. This stage is split into two parts. In
part one (S6-P1), it allocates a new page by reserving a new
ppn by initNewPPN during NDP engine initialization. The
ppn specifies the physical address of the page (calculated as
ppn multiplied by the page size) in the pre-allocated space
within the persistent storage, as indicated by "new pages" in
Fig. 3-c. The ppn, specified by the software-side of DBMS,

as indicated in the NDP command operation, increments with
each new page allocation. The initNewPPN (1lpn, ppn)
module is responsible for updating L2P-mapping in the per-
sistent storage. To this end, it first uses Ipn to calculate the
physical address of the ppn entry in the L2P-mapping table.
Then, it writes the new ppn value to that address, to be later
used by the other software-side DBMS.

After a successful allocation and update of the L2P-
mapping, S6 builds the new page (e.g., page header) in on-chip
memory, and waits for receiving a new record to write to the
page (®). In part two (S6-P2), the stage checks if the page
is full or not. If the page is full, the stage writes the page in
the persistent storage (@); now the engine repeats the process
of allocating a new empty physical page. Using an offloader
enables the engine to simultaneously flush the old page to
storage while the first part S6-P1 is allocating a new page.

7) Preloader & Offloader: These units are designed to
improve the performance of the NDP engine by hiding NVM
latency. The preloader prefetches/pre-loads data from persis-
tent storage to on-chip scratchpads in the background while
the engine is still busy operating on other data. The offloader
moves processed data from the on-chip scratchpad memory
back to storage. It coalesces many smaller updates together
into a single full-page write (8...64 KiB), which can be
written in an efficient long burst.

IV. EXPERIMENTAL SETUP AND EVALUATION
A. Experimental Setup

To evaluate the performance of the proposed system, we
built the CINDA updateNDP-capable computational storage
device on a Xilinx/AMD Alveo U280 FPGA (AU280), and
connected it via a CCIX-capable PCle slot to an ARM
Neoverse N1-SDP host [28]. The platform is equipped with
16GB RAM and four ARM Neoverse N1 cores, similar to
those used in Microsoft’s Azure cloud and Google’s TAU T2a
cloud platforms. For the necessary infrastructure on the FPGA,
we rely on the TaPaSCo framework [29] and integrate CCIX
interface modules into the System-on-Chip (SoC) architecture
on the AU820. Additionally, we realized H-NSI as TaPaSCo’s
software layer to enable seamless transitioning between PCle-
DMA transfers and CCI traffic. Since our computational
storage device uses byte-addressable NVM, which currently
is not widely commercially available in hardware, we emulate
three different speed grades of NVM (modeled after Intel
Optane devices) using DDR4-SDRAM [30].

1) NDP Engine Implementation: The proposed NDP en-
gine is designed to efficiently qualify records (based on visi-
bility checking and filtering), synchronize modifications with
the concurrent transactions on the host, and build new pages.
Since the data structures and algorithms on the software-
side of the NDP update-capable DBMS are still in active
development, we rely on a programmable CPU soft-core for
selected data processing operations (c.f. Fig. 6-S1, S2, S3,
S5, and S6) and a hardware accelerated modules such as a
hardwired lock handler to synchronize the modification with
the host executor (c.f. Fig. 6-S4 and Fig. 4-a) in the hardware-
side DBMS interface. This approach, while less performant
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than an all-hardware solution, offers far greater flexibility and
ease of deployment to keep up with DBMS interface changes.
To mitigate the performance loss, multiple instances of the
NDP engine are utilized, allowing for distributing the NDP
workload. In addition, by efficiently utilizing the application-
specific data preloading and offloading through the preloader
and offloader modules, data transfers and computations on the
soft cores can be effectively interleaved, further improving the
overall performance of the NDP engine.

Integration of the soft-core into an engine is achieved by
wrapping the actual core with a control unit, hardwired lock
handler (c.f. Fig. 4-a), local memory, preloader, and offloader
units, as shown in Fig. 7. The control unit manages core
initialization and signals the host upon operation completion.
It interfaces with both the soft-core and host systems for
efficient operation management. The DBMS software accesses
and controls this unit through a control interface, i.e., AXI-
MM, and is responsible for loading the pre-built firmware. The
local memory comprises instruction memory, data memory,
and scratchpad memory, all mapped to the core’s address
space. The preloader and the offloader are custom byte-
addressable DMA engines capable of transferring data to and
from scratchpad memory and persistent storage.

2) Benchmark Setup: To evaluate the NDP update function-
ality and involved components during high-contention settings,
we utilize the YCSB benchmark [31] to generate update-
intensive hybrid workloads, which we then vary in their read-
to-update ratios. During the entire evaluation, the host-side
DBMS is continuously and frequently updating the ycsb_table
with short-running update transactions (referred to a F-S-
update) affecting individual records:

UPDATE ycsb_table
SET FIELDl = newValuel, ...,
WHERE ycsb_key == randomKey;

FIELD10 = newValuelO

Then, to stress the system and increase the contention on
the shared lock table, specifically the locking mechanism, we
inject a full table update as a single long-running update
transaction (referred to as L-update) as shown below, either
on the host-side DBMS, or on the NDP device. During this
L-update execution, every record undergoes reading, visibility
checking, and filtering processes. We vary the percentage of
records that pass filtering (so-called selectivity) to be updated.

UPDATE ycsb_table SET FIELD1 = newValue
WHERE ycsb_key >= minKey AND ycsb_key <= maxKey;

Note that the on-device execution of the L-update on the
NDP engine might not be validated after completion. This
can occur due to potentially newer record versions having been
created by concurrent F-S-update on the host-side DBMS (c.f.
Sec. III-B4). To minimize abort overhead, and the need to
re-execute the costly L-update transaction in the first place,
we use the SELECT-FOR-UPDATE technique where the NDP
engine locks the qualified records (visible and filtered) early
in the processing pipeline by executing stages S1-S4 (Fig. 6).
Once qualified records are successfully locked, the engine runs
stages S5, S6.

3) Non-NDP Software Baseline: For the non-NDP software
baseline, we use PostgreSQL 12 (pgSQL). pgSQL uses a ded-
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Fig. 7. Programmable soft-core in an NDP engine with supporting modules.

TABLE I
FPGA-RESOURCE AVAILABLE AND UTILIZATION.
Module name LUTs Registers | BRAM | DSPs
Available resources 1303680 2607360 2016 9024
Storage SoC 50.85% 21.61% 45.86% 1.23%

icated fast Samsung 980 Pro NVMe SSD as storage, operated
with a traditional storage stack, including file-system (ext4)
and block device storage. Remember that existing update-
aware NDP architectures, such as DANSEN in neoDBMS [8],
only allow the execution of read-only NDP operations (c.f.
Sec. 1I-B4) and do not support update NDP operations. This
limitation results from lacking H-NSI with CCI capabilities
and a locking mechanism to coordinate NDP operations with
concurrent host updates. Both DANSEN and our work here
employ PostgreSQL as host DBMS (c.f. Sec. III-A).

4) Computational Storage Configurations: Each CINDA
NDP engine is based on a lock handler, preloader, offloader,
and a MicroBlaze core from AMD/Xilinx (c.f. Fig. 7). The
soft-core is set to 64-bit addressing mode to effectively manage
data sets exceeding 4 GiB. It is optimized for "maximum
performance” by enabling and setting the data cache to 16
KiB, which is the optimal configuration for processing NDP
database operation [8].

The assessment of the proposed system is conducted on the
ARM platform supporting 16-byte atomic CAS operations for
fast synchronization via CCIX. Thus, the queue size register
in the lock handler is set to 2 bytes, enabling 8 concurrent
transactions per record as explained in Sec. III-C. To mitigate
ATS (address translation) overhead latency, Linux huge pages
were employed to allocate the shared-lock table.

We evaluate the performance of our computational storage
using emulated byte-addressable NVM, based the memory
timings on published latency data for Intel Optane DC from
various sources [32]-[35]. To widen the scope of our experi-
ments beyond just the Optane characteristics, we have defined
three NVM latency categories: fast-NVM (r/w: 305ns/100ns),
mid-NVM (r/w: 350ns/170ns), slow-NVM (r/w: 350ns/800ns).
Additionally, we also observe a case where we set read and
write latencies to zero without using the emulator (case no-
NVM = case DRAM]), thus using the DDR4-SDRAM directly.

The proposed storage engine’s flexible design allows for
conducting design space exploration to identify the optimal
balance between the number of NDP engines and the highest
achievable clock frequency to maximize performance. The
outcome of these explorations resulted in our use of 8 engines
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Fig. 8. A comparison of read/write throughput for (b,d) CINDA using computational storage and (a,c) PostgreSQL using NVMe storage. Note that figures
(a),(b) show this comparison while the DBMS is operating under a [hybrid workload], including L-update and F-S-update transactions, while figures (c),(d)
show this comparison while DBMS only processing long-running update transaction ([L-update]). Be sure to note the very different Y-axis scale for the PgSQL

and CINDA cases, including the brief I/O spikes in CINDA around the 35s mark.

operating at 180 MHz. For the remaining modules, we used
the maximum clock frequencies: the PCle block and system
cache at 250 MHz, and the emulated NVM (memory controller
and NVMulator) at 300 MHz. Additionally, the resource usage
of the proposed computational storage is shown in Table I.

Note that, compared to the earlier DANSEN non-cache
coherent computational storage [8], the cache-coherent CINDA
computational storage requires extra logic and routing re-
sources to enable coherency messages through the CCI (here:
CCIX). This leads to severe congestion in the chip’s routing.
In addition, the CINDA SoC now includes three different
buses (see Fig. 5) that connect NDP engines to system cache,
memory controller, and PCle block, which further increases
the congestion. These two factors prevent us from enabling
the second memory controller on the FPGA, and achieving
good timing closure with the larger number of soft-core CPUs
that were realized in DANSEN.

B. Evaluations

We begin the experiments with a birds-eye-view, namely
by evaluating the impact of CINDA on the overall full-stack
DBMS performance. Then, we proceed to investigate individ-
ual NDP engine performance characteristics in greater detail.

1) Experiment 1 (DBMS-Storage Read/Write Throughput
on Hybrid Workload): The objective of this experiment is
to evaluate the impact of the proposed system on the data
movement between DBMS on the host and storage device,
while executing a hybrid workload, including concurrent L-
update and F-S-update transactions (please see Sec. IV-A2
for their descriptions). To this end, we measured the overall
DBMS read/write throughput to and from the storage device
while processing six million records using SELECT-FOR-
UPDATE technique (also discussed in Sec. IV-A2). As shown
in Fig. 8-a and -b, the host-side DBMS is executing frequent
short F-S-update transactions. Then, we stress it by injecting
a single long-running L-update transaction at the 20-second
mark, on pgSQL in (a), and using CINDA NDP in (b).

On the non-NDP baseline in Fig. 8-a, using pgSQL and
NVMe, the required read and write throughputs increase
significantly after the injection of the L-update transaction.
This increase is due to the intense transfers of database pages
between the storage device and the host. As indicated in the
figure, the DBMS first locks qualified records (lock phase) in
the first 20 seconds. Then, it starts the update phase. Note the
drastically raised I/O buffer contention in the update phase,
necessitating the eviction of old pages to make room for new
ones, which results in extra read requests to the storage, as
indicated by buffer pollution in the figure. Once the L-update
I/O operations are completed after 84.0 seconds (at the 104-
second mark), the required throughput returns to normal levels
as the system resumes processing F-S-update transactions.

In NDP using CINDA, the L-update transaction is offloaded
to eight NDP engines, with both the preloader and the offloader
enabled to optimize data transfers. Once the L-update is
injected, these NDP engines lock the records early in the
execution pipeline, which halts the host-DBMS processing of
F-S-update. Thus, the host-initiated I/O drops to zero, as the
computational storage is busy executing the injected update in
a “sprint-to-completion” fashion. After the NDP-side L-update
transaction is complete, the host-DBMS resumes processing
its F-S-update transactions by fetching new records from the
storage and the log information (c.f. Sec. III-B4). Note that
in the CINDA system, the host-DBMS is stalled for a much
shorter time compared to the non-NDP baseline. More detailed
experiments on L-update execution times in NDP and non-
NDP modes are presented later in Experiment 4.

2) Experiment 2 (DBMS-Storage Read/Write Throughput
on Long-Running Update): The aim of this experiment is
to evaluate the data movement between DBMS on the host
and storage device when not using SELECT-FOR-UPDATE
technique. When not using this technique, there is a high risk
of conflict-induced aborts during execution or invalidation of
the NDP transaction, as discussed in Sec. III-B4. To ensure
forward-progress, we did not execute F-S-update transactions
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Fig. 9. A comparison of the host-side DBMS transaction throughput between CINDA using computational storage vs. PostgreSQL using NVMe storage,
working under a hybrid workload for a selectivity of (a) 100%, (b) 50%, and (c) 0% of records updated in the L-update transaction.

and only inject the L-update transaction at the 20-second mark.
The results of this comparison are shown in Fig. 8-c,d.

As expected in the non-NDP baseline, Fig. 8-c, the host
DBMS starts to load pages from storage and, in parallel,
updates them. After 67 seconds (at the 87-second mark),
pgSQL finishes executing the transaction, which is faster than
Experiment 1, as this time, there is no F-S-update workload in
the background. In the CINDA system, as shown in Fig. 8-d, the
L-update transaction is offloaded to the eight NDP engines and
finishes execution in 17.6 seconds (at the 37.6-second mark).
After the NDP completion, the software-side DBMS reads
the logged data (AVID) to validate the NDP execution (c.f.
Sec. I1I-B4), even though there are no concurrent transactions
on the host in this experiment.

3) Experiment 3 (Host-Side DBMS Transaction Through-
put): The objective of this experiment is to examine the impact
of scaling the number of records subjected to the update
operation on the performance of the DBMS under the hybrid
workload. To this end, we extend the previous experiment and
shrink the number of update operations in the long-running
transaction from 100% selectivity (as seen in Experiment 1)
first to 50% and then to 0%. This is achieved by altering the
WHERE clause in the L-update transaction to select the records
for updating. Note that even in the 0% mode, the executor still
has to perform the visibility checking and filtering operations
for each record.

Fig. 9 shows a host-side DBMS transaction throughput com-
parison between CINDA and pgSQL in terms of transactions
processed per second. After injecting the L-update, CINDA’s
host-side DBMS transaction throughput drops to zero, as the
transaction (L-update) executes on the NDP engines on the
device and blocks the host-side concurrent update operations
from F-S-update transactions. Upon completion of L-update
on the device, the host-DBMS resumes executing F-S-update
transactions. In contrast, pgSQL’s throughput reduces to a
single transaction and remains low for a longer period as the
L-update transaction blocks all other concurrent F-S-update
transactions on the host. Note that in traditional non-NDP
mode, the DBMS is required to transfer the complete table
from dumb storage to the host. However, in NDP mode, the
NDP engines lock only the specific selection of records for
updates, rather than locking the entire table. Using the fine-
grained shared-lock table, rather than locking the whole table,
enables the execution of concurrent host-side update transac-

—o== CINDA (Computational storage)
= m= pgSQL (Intel Optane DC P4800X)
75 |==#== pgSQL (Samsung 980 Pro)

-
-
-

60% 70% 80% 90% 100%

0%  10%
Percentage of Records Updated in L-Update Transactions

20% 30% 40% 50%

Fig. 10. A comparison of the overall execution times between CINDA and
baseline (PostgreSQL) while executing L-update with an increasing fraction
of records updated (higher selectivity).

tions, which leads to higher concurrent host-side throughput
and reduces the likelihood of NDP transactions being aborted
(c.f. Sec. III-B4). While this is the same scenario that was
used in Experiment 1, Fig. 8-a,b describes required DBMS-
Storage read/write /0 throughput, whereas Fig. 9 details host-
side DBMS transaction throughput.

Fig. 9-b and -c show the throughput comparison for 50%
and 0% scenarios. In the 50% case, the L-update transaction on
CINDA is shorter due to fewer records needing to be updated,
and wins over the pgSQL execution due to the avoided data
transfers. However, in the 0% scenario, the CINDA L-update
transaction takes ~3 seconds on the device. This is due to the
visibility checking and filtering of each record that still needs
to be performed NDP-side. pgSQL, in the 0% case, completes
the execution of the L-update transaction in ~0 seconds due
to it using index structures to quickly determine if any records
require updating at all. In the 0% case, it finds none and stops
execution immediately.

Note that, in the CINDA’s system, in the high contention
setting, where both L-update transaction on the NDP engine
and F-S-update transactions on the host attempt to update
the entire table, the locking mechanism halts the host-DBMS
processing of F-S-update. In contrast, in the low contention
setting, the locking mechanism allows the host-side concurrent
update operations (F-S-update) to update the qualified records
without locking the entire table, which would otherwise halt
the host-side workload. In addition, the CINDA host-DBMS
transaction throughput achieves similar throughput as pgSQL
for F-S-update. In this mode, CINDA’s computational storage
is used as a “dumb” (non-computational) storage device.
This comparable throughput between CINDA (with N20O) and
pgSQL (with O2N) shows that the chosen scheme for version
change organization (c.f. Sec. II-B2) does not impact the sys-
tem performance, as the version-chain-length remains small.
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4) Experiment 4 (End-to-End Execution Time): In this
experiment, we compare the total execution time of our CINDA
system and PostgreSQL, while processing a hybrid workload
with different numbers of records subject to update. We extend
the previous Experiment 3, which considered Transaction
Rates, by more finely stepping the fraction of records updated
(selectivity) up from 0% in 10% increments, and monitor the
resulting execution times. Note that throughout the experiment,
all of the records pass S1-S3 stages in the processing pipeline
(Fig. 6), regardless of selectivity. However, only those records
meeting the filter condition proceed to request a record-level
lock from the shared-lock table at stage S4. Records that have
been granted a lock can then be updated in stages S5 and
S6. Our findings, as shown in Fig. 10, highlight a major
difference between the baseline and CINDA: With the data
transfers reduced by NDP, CINDA is not only considerably
faster than pgSQL, it is also less sensitive to updating larger
numbers of records (at higher selectivities). This is indicated
by the steeper slope of the pgSQL lines in the plot. We run this
experiment twice, once on a modern Flash-based Samsung 980
Pro NVMe SSD, then on a non-Flash Intel Optane SSD DC
P4800X, which employs non-volatile memory, similar to what
we emulate on our computational storage. As can be seen, for
the traditional page-based DBMS workload, just using NVM
instead of Flash does not gain benefits, as the performance on
the Optane SSD is slower than that of the Flash SSD. Only
when combining NDP and exploiting the byte-addressability
of NVM, as done by CINDA, can the benefits of NVM actually
be leveraged.

5) Experiment 5 (Effects of Memory Architecture): The
aim of this experiment is to assess the NDP engine perfor-
mance across different configurations of the CINDA per-PE
memory system (Sec. III-E7) and NVM latencies (Sec. IV-A4).
To this end, we show the end-to-end execution times of
processing the L-update transaction in four per-PE memory
system and three different NVM latencies.

In the first setup, which is used in the previous experiments,
the NDP engines operate with PEs having both the preloader
and offloader (with [pre+off]), achieving the best execution time
(Fig. 11). This is due to these techniques being able to hide
even longer NVM latencies in the data transfer paths between
the persistent storage and local scratchpad memory, leading
to a ~4.2x faster execution than on pgSQL. In the second
setup, we have only enabled the preloader (with [pre]). Here,
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Fig. 12. The effect of increasing the number of active NDP engines while
executing L-update on four different dataset sizes on the execution time (left
y-axis, lines) and on-device throughput utilization (right y-axis, bars).

the PEs in the NDP engines incur longer execution times due
to increased latency in writing data to storage.

Next, we enable only the offloader (with [off]), and thus
cause the NDP engines to incur delays caused by the no-longer
hidden extended read times to storage. In the fourth setup, we
disable both pre- and offloading (no [pre+off]), which leads to
the lowest performance.

6) Experiment 6 (System Scalability): We further extend
the previous experiment and execute the L-update transaction
on different dataset sizes, measuring NDP execution times and
on-device throughput. We vary the number of NDP engines,
always keeping both the preloader and offloader enabled. The
left y-axis of Fig. 12 shows the overall execution times, while
the right y-axis shows the read and write on-device throughput
used by the active engines. As expected, increasing the number
of engines results in faster execution times and higher on-
device throughput utilization, reaching ~0.9 GiB/s read/write
throughput. Our flexible hardware architecture would allow
even higher levels of parallelism. However, these designs can
only be implemented at lower clock frequencies and do not
provide performance gains (c.f. Sec. IV-A4). Note that a more
congested concurrent update operation over CCI, due to an
increasing level of parallelism, does not increase the device-
side lock latency [2], [12].

V. CONCLUSION

This paper introduced CINDA, a full-stack computational
storage system for accelerating hybrid DBMS workloads.
CINDA achieves this by executing both read and write database
operations “close” to the stored data following the Near-
Data Processing paradigm. CINDA’s Hybrid-Native Storage
Interface (H-NSI) provides to the DBMS both low-latency
messaging via a Cache-Coherent Interconnect (CCI), and high-
throughput via PCle-DMA. This flexibility ensures efficient
data access, supports database transaction offloading, and
facilitates the introduction of a fast shared-lock mechanism
that maintains transactional consistency between DBMS and
NDP during concurrent modifications.

Our end-to-end speedup of ~4.2 X, relative to the traditional
non-NDP PostgreSQL, stems from reducing data movement
and employing the shared-lock mechanism for low-latency
fine-grained concurrency control. The evaluation also high-
lights the effectiveness of NDP engines in leveraging the byte-
addressable features of NVM devices to boost performance,
while hiding memory access latencies with the preloader and
offloader facilities.
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