
Accelerating Sparse Linear Solvers on Intelligence
Processing Units

Tim Noack
Embedded Systems and Applications

TU Darmstadt
Darmstadt, Germany

noack@esa.tu-darmstadt.de

Louis Krüger
Fluid Mechanics and Aerodynamics

TU Darmstadt
Darmstadt, Germany

krueger.l@sla.tu-darmstadt.de

Andreas Koch
Embedded Systems and Applications

TU Darmstadt
Darmstadt, Germany

koch@esa.tu-darmstadt.de

Abstract—This paper presents an open-source framework for
solving large, sparse linear systems on Intelligence Processing
Units (IPUs). The IPU is a massively parallel architecture
consisting of thousands of independent cores connected by an
all-to-all communication fabric.

We introduce two Domain-Specific Languages, CodeDSL and
TensorDSL, that allow us to express complex algebraic algorithms
like solvers and preconditioners close to their mathematical
notation. Our framework symbolically executes these DSLs to
generate the dataflow graph, execution schedule, and the codelets
required by IPU’s programming model.

The IPU’s cacheless design allows us to reorder matrices with-
out performance penalties. We present a novel matrix reordering
strategy that enables efficient blockwise halo exchanges with the
IPU’s all-to-all communication fabric.

Our framework implements a suite of parallel linear solvers
and preconditioners, including the Preconditioned Bi-Conjugate
Gradient Stabilized (PBiCGStab) method and the Incomplete LU
Factorization (ILU). The IPU’s lack of native double-precision
support poses a challenge for solving large, sparse systems.
We address this using the novel combination of the Mixed-
Precision Iterative Refinement (MPIR) method and double-word
arithmetics to achieve high-precision solutions without native
double-precision support.

We evaluate our framework’s performance on matrices from
the SuiteSparse collection and synthetic Poisson problems,
demonstrating near-ideal strong and weak scaling on Sparse
Matrix-Vector Multiplications (SpMVs). Comparative bench-
marks show that our framework outperforms state-of-the-art
CPU and GPU implementations by up to 150x and 36x, respec-
tively, for SpMVs and iterative solvers at a comparable energy
consumption level. Our results highlight the potential of IPUs for
high-performance sparse linear algebra computations in scientific
and engineering applications.

Index Terms—Sparse Linear Solvers, Domain Specific Lan-
guage (DSL), Intelligence Processing Unit (IPU), Double-Word
Arithmetics

I. INTRODUCTION AND MOTIVATION

Solving large, sparse linear systems of equations is a funda-
mental task in scientific computing, with applications ranging
from computational fluid dynamics to structural analysis. The
increasing complexity and scale of these systems demand ever-
more efficient computational methods and hardware architec-
tures. While traditional CPU and GPU architectures have long
been the workhorses for such computations, emerging special-
ized hardware presents new opportunities and challenges.

The Intelligence Processing Unit (IPU), developed by
GraphCore, is a novel massively parallel architecture designed
for machine learning applications. With its unique design
featuring thousands of independent cores, high-bandwidth on-
chip memory, and an all-to-all communication fabric, the IPU
offers intriguing potential for accelerating sparse linear algebra
computations.

However, we found that the IPU’s programming model,
centered around constructing a dataflow graph and an exe-
cution schedule, is not naturally suited to expressing complex
algebraic algorithms. Additionally, the IPU lacks native sup-
port for double-precision floating-point operations, which are
often crucial for achieving the required accuracy in scientific
computations. Efficiently distributing and solving sparse linear
systems across the IPU’s thousands of relatively small cores
while managing inter-core communication presents significant
algorithmic challenges.

This paper presents an open-source framework [1] designed
to address these challenges and enable efficient solution of
large, sparse linear systems on IPU architectures. Our key
contributions include:

1) Two Domain-Specific Languages (DSLs) that allow pro-
grammers to express complex algebraic algorithms close
to their mathematical notation

2) A novel combination of the Mixed-Precision Iterative
Refinement (MPIR) method with double-word arith-
metics to achieve high-precision solutions without native
double-precision support

3) A novel matrix reordering strategy that allows for effi-
cient blockwise halo exchanges on IPUs

4) A suite of parallel linear solvers and preconditioners,
including Preconditioned Bi-Conjugate Gradient Sta-
bilized (PBiCGStab) method and the Incomplete LU
Factorization (ILU)

5) A comprehensive evaluation demonstrating our frame-
work’s performance across various matrices, showcasing
significant speedups over CPU and GPU implementa-
tions for certain operations.

By addressing these challenges, our framework opens up
new possibilities for accelerating sparse linear algebra compu-
tations on specialized hardware. This work demonstrates the

potential of IPUs for scientific computing beyond their original
machine learning focus.

II. BACKGROUND

A. Intelligence Processing Unit

The Intelligence Processing Unit (IPU) is a novel massively
parallel computing architecture developed by GraphCore
specifically for machine learning applications. As the IPU
is less familiar than traditional architectures like CPUs and
GPUs, we provide a brief overview of the architecture and its
programming model [2].

The current generation of IPU chips (Mk2) consists of 1,472
processor cores, referred to as tiles. For optimal utilization,
each tile must execute six worker threads in parallel. In
contrast to GPU architectures, worker threads on the IPU are
fully independent and can execute different instructions.

Each tile is equipped with approximately 612 kB of local
SRAM memory, totaling 900 MB per chip. This memory is
tightly coupled to its respective processor core, enabling high-
bandwidth, low-latency access without a cache hierarchy. The
aggregate memory bandwidth reaches an impressive 47.5 TB/s
per chip. However, each SRAM block is exclusively accessible
by its associated processor core.

To program the IPU, GraphCore provides the Poplar soft-
ware development framework, which includes the Poplar
compiler. Programmers describe a program in the Poplar
framework by constructing a dataflow graph, an execution
schedule, and codelets. Codelets are individual computational
operations, similar to CUDA kernels, that are programmed
in C++. The dataflow graph consists of vertices representing
compute operations on tensors, connected by edges depicting
data flow. Parallel-executable vertices are grouped into com-
pute sets. The execution schedule is a Directed Acyclic Graph
(DAG), with vertices representing program steps. Program
steps can execute a compute set, copy tensors, and perform
control flow operations like loops and branches.

Multiple IPU chips can be interconnected via stateful,
packaged inter-chip communication links (IPU-Links). Tiles
on the same chip are connected to each other via a stateless,
packageless, all-to-all communication fabric. The communi-
cation programs are generated before execution by the Poplar
compiler. On-chip communication programs are cycle-precise;
that is, each transfer’s start and end cycle count relative to the
communication program is fixed. This is possible because the
Poplar compiler knows all the timing characteristics of the
communication fabric, and all involved tiles synchronize be-
fore communication, following the Bulk Synchronous Parallel
(BSP) paradigm. In the BSP model, computation is divided
into supersteps separated by global synchronization barriers,
ensuring predictable communication patterns and simplifying
reasoning about parallel execution.

Notably, the IPU does not support double-precision floating-
point operations. We overcome this limitation by using a com-
bination of the Mixed-Precision Iterative Refinement (MPIR)
method (Section V-B) and double-word arithmetics (Section
III-D).

B. Sparse Linear Solvers on Parallel Architectures

Solving large, sparse linear systems of equations is a funda-
mental task in scientific computing, particularly in fields such
as computational fluid dynamics, structural mechanics, and
electromagnetic simulations. These systems often arise from
discretizations of partial differential equations using Finite
Element or Finite Volume Methods. Due to the scale and
complexity of these problems, parallel computing architectures
are often essential.

The parallelization of sparse linear solvers typically involves
two levels of parallelism:

1) Distributed Memory Parallelism: On distributed mem-
ory systems - like clusters of CPUs and GPUs - the matrix
describing the system of equations is distributed across multi-
ple computation nodes. This distribution is typically done row-
wise, where each node handles a subset of the matrix rows.
During the solution process, nodes must exchange information
about overlapping regions of their submatrices. This inter-node
communication is commonly implemented using the Message
Passing Interface (MPI) [3], [4].

2) Shared Memory Parallelism: Within each computational
node, fine-grained parallelism can be exploited to utilize multi-
core CPUs or many-core accelerators like GPUs. For example,
NVIDIA’s cuSPARSE library employs various techniques to
parallelize sparse matrix operations across thousands of GPU
threads, such as graph coloring, level-set scheduling, and
iterative methods [5].

Our framework combines both techniques: We distribute the
matrix row-wise across all tiles and use level-set scheduling
to parallelize sequential solvers to all six worker threads of
each tile.

C. Sparse Matrix Format

Various storage formats have been proposed to represent
sparse matrices efficiently. Due to its simplicity and efficiency,
the Compressed Row Storage (CRS) format (also called Com-
pressed Sparse Row (CSR) format) is widely adopted for
sparse matrix representation. This format employs three arrays
to store the matrix [6]:

1) A value array contains all non-zero elements.
2) A column index array indicates the column position of

each non-zero element.
3) A row pointer array marks each row’s start in the value

and column index arrays.
Our framework uses a modified CRS format that stores

diagonal elements separately from the off-diagonal entries in
a dense array. Although non-singular matrices do not inher-
ently guarantee non-zero diagonal entries, in many practical
applications – such as matrices arising from Finite-Element
and Finite-Volume methods – or after applying an appropriate
row permutation, the diagonal entries are typically non-zero.
By storing these diagonal values in a dense array rather than
embedding them in the CRS structure, we avoid recording
their column indices, thereby reducing the memory footprint.
Moreover, this modification benefits certain solvers, such as

the Gauss-Seidel method, by providing direct access to each
row’s diagonal element.

Several sparse matrix formats have been developed to en-
hance the vectorizability of operations, particularly for SpMVs
commonly encountered in iterative solvers. Notable among
these are the ELLPACK format, initially proposed in the
ITPACKV software package [7], and its variant, the Sliced
ELLPACK (SELL) format [8].

Both ELLPACK and SELL store matrix coefficients in
fixed-length blocks. While these formats can significantly
benefit processors with large vector units and memory caches,
they add complexity to the implementation. However, the
IPU has limited support for wide vector operations, with
most single-precision floating-point instructions restricted to
two-element wide vectors [2]. Furthermore, some operations,
such as division and reciprocal calculations, do not support
vectorization at all. The IPU’s cache-less design eliminates
most potential benefits from the contiguous memory layout of
ELLPACK and SELL formats.

Furthermore, the IPU can execute conditional branches with
single-cycle latency, allowing for an efficient selection of two-
element vector and scalar instructions based on the number of
coefficients left in the matrix row. Given these architectural
considerations, we anticipate that the performance gains typi-
cally associated with ELLPACK and SELL formats would be
small on IPUs. We leave the exploration of these formats on
IPUs for future work.

III. DOMAIN-SPECIFIC LANGUAGES (DSLS) FOR
ALGEBRAIC PROGRAMS ON THE IPU

The programming model of Poplar requires the programmer
to construct a data-flow graph, an execution schedule and C++
codelets. We found this to be cumbersome for developing
complex algebraic programs like solvers. To address this, we
developed two DSLs that work hand-in-hand: CodeDSL and
TensorDSL. Both languages are embedded in C++ and dynam-
ically typed. They allow the programmer to write expressive
code that is close to the mathematical notation.

CodeDSL is a description language for codelets. Algorithms
in CodeDSL are written from a tile-centric perspective, mean-
ing they can only access parts of tensors that are mapped to
the executing tile. CodeDSL supports most operations that are
possible in bare C++.

TensorDSL operates on tensors mapped across one or
multiple tiles, providing a global perspective on entire tensors,
regardless of their distribution across multiple tiles or IPUs.
This language supports elementwise operations, reductions,
broadcasting, and copying tensors to and from remote and
host memory, but it does not allow manipulating individual
elements of a tensor. TensorDSL uses CodeDSL internally to
generate codelets for tensor operations.

Many algorithms in our framework combine both languages.
For instance, the Gauss-Seidel solver uses TensorDSL to
calculate the residual and its vector norm, and CodeDSL to
perform the smoothing step.

/ / C r e a t e a TensorDSL t e n s o r
Tensor x (Type : : FLOAT32 , {1 0 0 0 0}) ;

/ / F i l l t h e t e n s o r wi th t h e L e i b n i z
/ / s e q u e n c e u s i n g CoreDSL
Execu te ({ x } , [] (Value x) {

/ / I t e r a t e ove r t h e e l e m e n t s
For (0 , x . s i z e () , 1 , [&] (Value i) {

x [i] =
((i % 2 == 0) ? 1 : −1) / (2 * i + 1) ;

}) ;
}) ;

/ / C a l c u l a t e p i from t h e L e i b n i z s e q u e n c e
/ / u s i n g TensorDSL
Tensor p i = x . r e d u c e () * 4 ;

I f (Abs (p i − 3 .141 f) < 0 .001 f ,
[] { P r i n t (”We found p i ! ”) }) ;

Fig. 1: Example of an algorithm written with TensorDSL.

Both DSLs support control flow operations, including con-
ditionals and loops, with intuitive syntax. Although the syntax
is consistent across both languages, the internal implementa-
tion of control flow operations differs fundamentally. While
CodeDSL simply emits C control flow statements (eg. if(),
while()) into the generated codelets, TensorDSL uses a
control flow stack to generate the execution schedule for the
dataflow graph (detailed in Section III-B).

Figure 1 shows an example of an algorithm that uses both
languages. The example code uses CodeDSL to construct the
Leibniz sequence and TensorDSL to calculate the sum of the
sequence and multiply it by four. The result is a scalar tensor
with a value close to the mathematical constant π.

A. Compilation and Execution

The compilation of our DSLs to a graph program and its
execution consists of four steps:

1) Compilation for the CPU: The DSLs are compiled to
a CPU executable using a standard C++20 compiler.

2) Symbolic execution on the CPU: The program is
executed on the CPU, generating a dataflow graph,
execution schedule, and codelets. We call this step
symbolic execution because, during this step, tensors
have symbolic values that correspond to edges in the
generated data flow graph. TensorDSL operations like
materializing expressions or copying tensors extend the
dataflow graph and execution schedule. CodeDSL op-
erations generate C++ codelets that are compiled and
scheduled for execution.

3) Graph compilation for the IPU: The Poplar compiler
optimizes the dataflow graph and execution schedule. It
then generates communication schedules and machine
code for the IPU.

DSL
Code

CPU
Executable

CPU compiler Symbolic
Execution

Dataflow
Graph

Execution
Schedule

Codelets

Poplar
Compiler

Graph
Program

Concrete
Execution

IPU

Fig. 2: Compilation and Execution of DSL code with our
framework.

4) Concrete execution on the IPU: The generated graph
program is executed on the IPU or in a simulator.
CPU callbacks can be used for data transfer or to mix
CPU and IPU calculations. For example, we use CPU
callbacks to inform the user about the solver’s progress.
The simulator is part of the Poplar framework and allows
the programmer to test their algorithms on the CPU
before deploying it to the IPU.

The translation process is illustrated in Figure 2.

B. Control Flow in TensorDSL

Poplar’s programming model requires developers to manu-
ally construct an execution schedule for the dataflow graph.
The execution schedule consists of sequential program steps
for executing codelets, copying tensors, performing control
flow operations, and other tasks.

Our framework automatically generates the execution
schedule based on a control-flow stack. The stack is managed
by control functions provided in TensorDSL, such as If and
While. For each branch, these functions push a new program
step onto the stack and populate it by symbolically executing
the code provided for the branch. The code is passed to the
control functions as lambda functions, allowing for a clean
and expressive syntax. After a branch is executed, the program
step is popped from the stack again. With this approach, the
program step at the top of the stack always represents the
current state of the symbolically executed program.

C. Expressions and Materialization in TensorDSL

When evaluating a TensorDSL expression like x * 4
during symbolic execution, our framework does not modify
the Poplar dataflow graph or execution schedule directly.
Instead, the mathematical operation returns an expression
object. Expression objects can be combined to form more
complex expressions. Only when the value of an expression
is actually needed, the expression is materialized. Expressions
are materialized by generating CodeDSL codelets from the
expression tree for all involved tiles. The codelets are then
compiled and their execution is scheduled in the current pro-
gram step. When performing algebraic operations on tensors of

different shapes, tensors are automatically broadcast according
to NumPy’s broadcasting rules. Broadcasting is done internally
by the generated codelets, which avoids expanding broadcasted
tensors in memory prior to the operation.

We found that delaying the materialization of expressions
as long as possible has two advantages: First, it allows the
C++ compiler to optimize the generated codelet, for example
by performing a partial-redundancy elimination. This is not
possible otherwise, because Poplar compiles each codelet to
machine code in isolation. Second, it reduces the number of
vertices and program steps in the dataflow graph and execution
schedule. We found this to be important to reduce the compile
time of the Poplar graph compiler.

D. Extended Precision

The IPU does not support double-precision floating point
instructions natively. This presents a challenge for solving
large sparse systems of equations, where single-precision is
often insufficient to achieve acceptable residuals. To address
this, our DSLs supports two additional data types: A double-
precision type, which is emulated in software, and a double-
word type, which uses double-word arithmetics to provide
extended precision. Both types can be used with the Mixed-
Precision Iterative Refinement (MPIR) method, detailed in
Section V-B, to improve the precision of single-precision
solvers at no significant cost, as we demonstrate in Section
VI-C.

In double-word arithmetics, a number is represented as the
sum of two floating-point values. The larger value can be
seen as the rounded number, and the smaller value can be
seen as the rounding error. For instance, 1.00000001 cannot
be represented as a single-precision floating point number,
but it can be written as the sum of 1 · 100 and 1 · 10−8.
The sum of these two numbers can represent a number with
twice the precision of the main part alone. Double-word
arithmetics take advantage of the fact that many floating-point
operations can determine their own rounding error. It is worth
noting that double-word arithmetics do not extend the range
of representable numbers, only their precision.

The double-word arithmetics proposed by JOLDES ET AL.
[9] and LANGE AND RUMP [10] provide algorithms for
basic arithmetic operations (addition, subtraction, multipli-
cation, and division) on double-word numbers and between
double-word and single-word numbers. To the best of our
knowledge, there was no existing C/C++ library for double-
word arithmetics with single-precision floating-point numbers.
Therefore, we implemented and open-sourced the TWOFLOAT
library [11]. The library implements both arithmetics and
calculates all required constants during compilation, enabling
its use with any underlying floating-point type. CodeDSL uses
TWOFLOAT internally to materialize double-word expressions.

While LANGE AND RUMP’s approach offers faster compu-
tation by omitting normalization steps, we prioritize the more
precise, albeit slower, arithmetic by JOLDES ET AL. for the
MPIR method, as we found numerical stability to be crucial
for overall solver performance. Depending on the operation,

Operation Single-Precision Double-Word Double-Precision
Algorithm native JOLDES ET AL. compiler-rt
Decimal digits 7.2 13.3 to 14.0 16.0
Range 10−38 to 1038 10−38 to 1038 10−308 to 10308

Addition 6 cycles 132 cycles ca. 1080 cycles
Multiplication 6 cycles 162 cycles ca. 1260 cycles
Division 6 cycles 240 cycles ca. 2520 cycles

TABLE I: Comparison of the floating-point types supported
by our DSL and the cycle count required for basic arithmetic
operations on the IPU. The exact precision of the double-
word arithmetic depends on the operation; the exact cycle
count for the emulated double-precision depends on whether
normalization of the result is required.

the arithmetic by JOLDES ET AL. requires 20 to 34 floating-
point operations to perform a double-word operation, while
the arithmetic by LANGE AND RUMP requires only 7 to 25
operations. However, the precision decreases with consecutive
operations, which is a concern for the Iterative Refinement
(IR) method.

Table I compares the floating-point types supported by our
DSL. Operations in the double-word arithmetic are signifi-
cantly faster than emulated double-precision, at the cost of
two to three fewer decimal digits of precision and a smaller
range.

IV. HALO EXCHANGE

Our framework decomposes and distributes the matrix
across multiple tiles. However, this decomposition introduces
a challenge: Computations on one tile require data owned by
neighboring tiles at the boundaries of each tile’s domain.

For this, each tile maintains halo values - a buffer containing
copies of boundary data from neighboring tiles. These values
must be updated regularly during the solution process to ensure
all tiles have access to the most current data required for their
local computations.

While conventional CPU and GPU systems benefit from
matrix row reordering to improve cache locality, the cache-
less architecture of IPUs renders such optimizations irrelevant.
Instead, our framework reorders the matrix to facilitate effi-
cient blockwise transfers of halo regions, speeding up halo
exchanges and reducing the size of the compiler-generated
communication programs.

Our approach conceptualizes the matrix as a mesh of cells,
with each cell representing a matrix row and coefficients
describing neighboring relationships. The matrix partitioning
corresponds to subdividing this mesh into subdomains as-
signed to different IPU tiles. Figure 3(a) illustrates this concept
with an 8x8 mesh partitioned across four tiles.

We categorize cells into three types:
• Interior cells (blue): Owned and required only by the

current tile.
• Separator cells (yellow): Owned by the current tile but

also required by neighboring tiles.
• Halo cells (red): Owned by neighboring tiles but also

required by the current tile.

Separator and halo cells are grouped into regions, where
each separator region has one or multiple corresponding halo
regions. During halo exchange, halo regions are updated with
the values of their corresponding separator regions.

Our strategy establishes a consistent ordering of cells within
each separator region and its corresponding halo regions. This
means that the cells are ordered identically in the source (sep-
arator) region and all of its corresponding destination (halo)
regions on neighboring tiles. By maintaining this consistent
ordering, we enable data to be copied directly from a separator
region’s memory to all corresponding halo region memories in
a broadcast manner, eliminating the necessity for reordering.

We define a region as the largest possible group of cells
for which a consistent cell ordering can be established across
all involved tiles. To determine the regions, each region is
characterized by a unique set of involved tiles - for separator
regions, these are the neighboring tiles requiring the region’s
values; for halo regions, it’s determined by the corresponding
separator region’s neighbors.

Our strategy follows these steps:
1) Identify separator cells and the neighboring tiles requir-

ing their values.
2) Group separator cells with identical sets of neighboring

tiles into regions.
3) Create corresponding halo regions based on the separator

regions.
4) Establish the same cell order within each separator

region and all its corresponding halo regions.
Figure 3(a) visualizes the resulting regions, with purple

arrows indicating regions sent from Tile 1 to its neighbors
and green arrows showing regions received by Tile 1. Figure
3(b) displays the resulting memory layout of a solution vector
(x) on Tile 1, with regions labeled by their involved tiles.

This reordering strategy enables efficient, blockwise halo
exchanges without local reordering operations. This is benefi-
cial for two reasons:

• It minimizes the size of communication programs gener-
ated by the compiler. Instead of issuing a communication
instruction for each separator cell, the compiler can issue
a single instruction for each region.

• It utilizes the IPU’s unique communication fabric, which
connects all tiles in an all-to-all manner. If multiple
neighboring tiles require a region, it can be broadcast
to all neighbors in a single blockwise transfer.

It is worth mentioning that our method is inspired by BUR-
CHARD ET AL. [12]. The authors propose three communication
schemes for unstructured mesh simulations on IPUs, but all of
which communicate unused data and require reordering.

V. SOLVERS

Our framework offers a versatile suite of solvers for linear
systems of equations. A key feature is the modular design,
which allows for nested solver configurations - any solver
can serve as a preconditioner for another, enabling highly
customizable solution strategies.

Tile 1 Tile 2

Tile 3 Tile 4

(a) Mesh partitioning and region transfers

{1}

{1, 2}

{1, 3}

{1, 2, 3}

{2, 1}

{3, 1}

{3, 1, 4}

{2, 1, 4}

Tile 1

(b) Mem-
ory layout

Fig. 3: (a) An 8x8 mesh partitioned across four tiles, showing
interior (blue), separator (yellow), and halo (red) cells. Purple
arrows indicate regions sent from Tile 1, while green arrows
show regions received by Tile 1. (b) Resulting memory layout
of the solution vector on Tile 1, with regions labeled by
involved tiles.

The solver hierarchy and associated parameters are easily
configured through a JSON file. This approach allows users
to quickly adapt the solver setup to their specific problem
requirements without modifying the underlying code.

A. Level-Set Scheduling

Level-Set Scheduling is a parallelization technique for se-
quential solvers, initially proposed by ANDERSON AND SAAD
[13] and later by SALTZ [14]. We use this method to parallelize
the Gauss-Seidel and Incomplete LU (ILU) solvers to each
tile’s six worker threads, but it can be applied to any algorithm
that iterates over matrix rows sequentially and then updates
the solution vector for each row based on previously updated
values.

The core idea of Level-Set Scheduling is to analyze the data
dependencies in the lower triangular part of the matrix, which
represent dependencies on updated solution vector values. The
method generates a DAG of these dependencies, in which
nodes represent matrix rows and edges indicate dependencies
between rows. This graph is then clustered into the levels.
Each level contains rows that depend on the updated values
from previous levels, allowing for parallel processing of rows
within the same level. The levels can be determined using
graph search algorithms such as modified topological sort or
breadth-first search [15]–[17]. When the levels are processed

in order, the method yields the same result as the sequential
algorithm and thus the same convergence rate.

Implementing Level-Set Scheduling requires all worker
threads to process the same level concurrently, followed by a
synchronization step to ensure updated values are available for
the subsequent level. Initially, we achieved this synchroniza-
tion by adding one compute set per level to Poplar’s data-flow
graph. Poplar automatically inserts a synchronization point
before each compute set, ensuring all worker threads have
completed the previous level before starting the next.

However, the large number of compute sets added to the
dataflow graph led to unacceptably long graph compilation
times. To address this issue, we developed and open-sourced
the IPUTHREADING library [18]. Our library allows us to use
a single compute set that spawns and synchronizes worker
threads for every level. The library generates the startup code
for worker threads and makes use of the run, runall, and
sync instructions.

The amount of parallelism that Level-Set Scheduling can
exploit depends on the sparsity pattern of the matrix. We
found that the method can often fully utilize all six worker
threads per tile. This is opposed to GPUs, where the method
may struggle to fully utilize all of the thousands of threads
available.

B. Mixed-Precision Iterative Refinement

Mixed-Precision Iterative Refinement (MPIR) is a method
proposed by MOLER [19] for improving the accuracy and
stability of floating-point solvers [20]. In the 2000s, hardware
emerged in which single-precision floating point was much
faster than double-precision floating point [21]. This motived
first LANGOU ET AL. to use the MPIR method to enhance the
performance of dense linear algebra calculations [22], and later
BUTTARI ET AL. for sparse linear algebra calculations [23].
Only recently have high-performance architectures emerged
in the context of machine learning accelerators that do not
support double-precision floating point operations at all, like
the IPU.

In this context, we revisit the MPIR method and combine
it with one of two extended precision methods: Double-word
arithmetics (detailed in Section III-D) and software emulated
double-precision. To the best of our knowledge, we are the
first to use double-word arithmetics for the extended precision
calculations in the MPIR method.

The method involves a three-step iterative process:
1) Compute the residual r(m) = b − A · x(m) in extended

precision.
2) Calculate a correction vector c by solving A · c(m+1) =

r(m) in working precision.
3) Update the solution x(m+1) = x(m)+c(m+1) in extended

precision.
The method’s convergence rate is proportional to the ma-

trix’s condition number, and it typically achieves working
precision accuracy for matrices that are not too ill-conditioned
[20]. In our framework, we utilize either the double-word arith-
metic proposed by JOLDES ET AL. [24] or software emulated

Tensor rA0 = b − A * x ;
Tensor pA = rA0 ;
While (! t e r m i n a t e , [&] {

rA0rA = (rA0 * rA) . r e d u c e () ;
Tensor b e t a = (rA0rA / rA0rAold) *

(a l p h a / omega) ;
pA = rA + b e t a * (pA − omega * AyA) ;
Tensor yA = p r e c o n d i t i o n e r . s o l v e (pA) ;
AyA = A * yA ; / / SpMV
a l p h a = rA0rA / (rA0 * AyA) . r e d u c e () ;
Tensor sA = rA − a l p h a * AyA;
Tensor zA = p r e c o n d i t i o n e r . s o l v e (sA) ;
Tensor tA = A * zA ; / / SpMV
omega = (tA * sA) . r e d u c e () /

(tA * tA) . r e d u c e () ;
x = x + a l p h a * yA + omega * zA ;
rA = sA − omega * tA ;
rA0rAold = rA0rA ;
t e r m i n a t e = . . . ;

}) ;

Fig. 4: Condensed DSL of the PBiCGStab solver. Our actual
implementation contains additional code for setup, residual
calculation, early exits due to convergence or singularity,
statistics and optional verbose output.

double-precision for steps 1 and 3, while step 2 employs any of
the solvers presented in this section in native single precision.
As detailed in Section VI-C, this approach effectively mitigates
the performance impact of the IPU lacking hardware double-
precision support.

C. Preconditioned BiCGStab (PBiCGStab)

The Preconditioned Bi-Conjugate Gradient Stabilized
(PBiCGStab) method is a Krylov subspace solver designed for
nonsymmetric and symmetric linear systems [25]. It combines
elements from the Bi-Conjugate Gradient (BiCG) and Conju-
gate Gradient Squared (CGS) methods to enhance stability and
convergence rates. Preconditioning significantly accelerates
the method’s convergence, making it a popular choice for
solving large sparse systems of equations in computational
fluid dynamics, structural analysis, and other fields. Any solver
presented in this section can be used as a preconditioner
for our PBiCGStab implementation. The method’s inherent
parallelism allows it to execute across all six worker threads
on the IPU without modifications.

Our implementation follows the algorithm presented in [25,
p. 638] and is shown in Figure 4. As can be seen, the imple-
mentation closely resembles the mathematical formulation of
the method.

D. Gauss-Seidel

The Gauss-Seidel method is a relatively simple iterative
solver for linear systems. While it guarantees convergence for
diagonally dominant or symmetric positive definite matrices

[26], it typically converges slowly. However, its smoothing
properties make it valuable as a standalone solver in finite
volume methods and as a smoother in multigrid algorithms
[27].

The method updates the solution vector components sequen-
tially:

x
(m+1)
i =

1

aii

bi −
i−1∑
j=1

aijx
(m+1)
j −

n∑
j=i+1

aijx
(m)
j

 (1)

To overcome the inherent sequentiality of Gauss-Seidel, we
employ Level-Set Scheduling (detailed in Section V-A) to
parallelize the method across all six worker threads on the
IPU.

E. ILU and DILU Preconditioners

Incomplete LU Factorization (ILU) and its variant,
Diagonal-based Incomplete LU Factorization (DILU), are pre-
conditioners that approximate the LU decomposition of a
matrix while maintaining its sparsity pattern. These methods
involve two distinct phases: The factorization process and the
substitution process.

The factorization process computes approximate lower tri-
angular (L) and upper triangular (U) matrices such that
A ≈ LU . This process follows the standard LU decomposition
algorithm but discards fill-in elements to preserve the original
sparsity pattern [28]. DILU, a simplified variant, only com-
putes the diagonal elements of U , reducing the computational
cost and memory footprint.

Once the L and U matrices are computed, they can be used
to solve systems of the form Ax = b. This substitution step
involves two steps:

1) Forward substitution: Solve Ly = b for y
2) Backward substitution: Solve Ux = y for x
The effectiveness of the (D)ILU preconditioners stems from

the fact that the factorization must be calculated only once
for the matrix and can be reused for all iterations in iterative
solvers as long as the matrix coefficients remain unchanged.

We parallelize the factorization and substitution steps using
Level-Set Scheduling (Section V-A) to all six worker threads
of each tile of the IPU. Both the factorization and the substi-
tution steps are performed on the IPU.

It is worth noting that variants of the Level-Set Scheduled
ILU and DILU preconditioners are patented in the US by
NVIDIA [29], [30].

VI. EVALUATION

This section presents a comprehensive evaluation of our
framework’s performance. We begin by detailing the ex-
perimental setup in Section VI-A. Section VI-B examines
strong and weak scaling characteristics of SpMVs in our
framework. In Section VI-C, we analyze the impact of the
Mixed-Precision Iterative Refinement method. The evaluation
concludes in Section VI-D with a performance comparison
between our framework and solvers on traditional CPU and
GPU architectures.

0 2 4 6 8 10 12 14 16
Number of IPUs

0
2
4
6
8

10
12
14
16

Sp
ee

du
p

Fig. 5: Strong scaling behaviour of an SpMV with a poisson
matrix with 58 M entries (blue dotted line). The orange dotted
line represents the speedup of the compute part only.

0 2 4 6 8 10 12 14 16
Number of IPUs

0
20
40
60
80

100

Ef
fic

ie
nc

y
in

 %

Fig. 6: Weak scaling behaviour of an SpMV with a poisson
matrix with 58 M to 890 M entries. The influence of the halo
exchange is too small to be visible.

G3_c
irc

uit

af_
she

ll7

Geo
_14

38

Hoo
k_1

49
8

10 2

10 1

100

101

Ti
m

e
in

 m
s

13.48x

54.64x
18.84x

61.65x 16.94x

149.84x

13.34x

140.86xIPU
GPU
CPU

Fig. 7: Execution times of SpMV on different platforms and
matrices.

G3_c
irc

uit

af_
she

ll7

Geo
_14

38

Hoo
k_1

49
8

100

101

102

Ti
m

e
in

 s
5.39x

3.26x

36.90x

5.33x

17.44x
7.44x

8.95x

3.01x

IPU
GPU
CPU

Fig. 8: Time for a IR-PBiCGStab+ILU(0) solver to converge to
a relative residual of 10−9 on different platforms and matrices.

0 500 1000 1500 2000
Iteration

10 17

10 14

10 11

10 8

10 5

10 2

101

Re
la

tiv
e

Re
sid

ua
l

BiCGStab+ILU(0)
IR+BiCGStab+ILU(0)
MPIR(DP)+BiCGStab+ILU(0)
MPIR(DW)+BiCGStab+ILU(0)

Fig. 9: Convergence plot of different solver configurations for
the Geo 1438 matrix.

0 1000 2000 3000 4000 5000 6000
Iteration

10 17

10 14

10 11

10 8

10 5

10 2

101

Re
la

tiv
e

Re
sid

ua
l

BiCGStab+ILU(0)
IR+BiCGStab+ILU(0)
MPIR(DP)+BiCGStab+ILU(0)
MPIR(DW)+BiCGStab+ILU(0)

Fig. 10: Convergence plot of different solver configurations for
the af shell7 matrix.

A. Methodology

We conducted performance evaluations of our framework on
an IPU-POD16 system, comprising four GraphCore M2000
machines interconnected via IPU-Links. Each M2000 unit
contains four IPUs, collectively providing 5,888 tiles, and
is equipped with 256 GB of DDR4 RAM. For comparative
benchmarking against other architectures, we compared a
single M2000 machine to an Intel Xeon Platinum 8470Q
CPU and an NVIDIA H100 SXM GPU. Table III presents an
overview of these architectures. GraphCore does not specify
the TDP for a single IPU chip. Instead, they list 1.100 W for
the AC power consumption of the whole M2000 unit. This
includes four IPUs, the IPU-Gateway, BMC, RAM, power
conversion losses, fans, etc. The maximal power consumption
of four IPUs on an M2000 measured with the onboard power
sensors during any of our benchmarks was 420 W.

For CPU and GPU benchmarks, we employed the HYPRE
solver framework. On NVIDIA GPUs, HYPRE leverages
cuSPARSE for fundamental operations such as SpMVs, vector
operations, and the ILU preconditioner. cuSPARSE offers both
direct and iterative variants of the ILU preconditioner; our test-
ing revealed the direct variant to be consistently faster across
all benchmark matrices. While HYPRE provides OpenMP
support for certain operations, the ILU preconditioner cannot
exploit OpenMP parallelism. Consequently, we opted for the
MPI version of HYPRE in all benchmarks, though we ob-
served the OpenMP version to be approximately 20 % faster
for SpMVs.

We compiled CPU and GPU code using GCC 13.1.0
and CUDA 12.5, with the flags -O3 -march=native
-mtune=native. This configuration enables the compiler
to exploit all available instructions and optimizations specific
to the target CPU.

When measuring execution times of individual operations,
like SpMVs, on the CPU or GPU, we warm up their cache by
performing 1,000 operations and measure the total execution
time of the subsequent 1,000 operations. For the IPU, we use
Poplar’s profiling feature to measure the required number of
cycles. Due to the determinism of the IPU and its constant
clock speed, the execution time is the same for every invoca-
tion.

We used four matrices from the SuiteSparse Matrix Collec-
tion [31] in our benchmarks, all of which are real, symmetric,
and positive definite. Table II details these matrices. For
scaling benchmarks, we generated matrices by discretizing the
Poisson equation on a regular, cubic 3D grid with a 7-point
stencil.

B. Strong and weak scaling

To evaluate the strong scaling capabilities of our framework
for SpMV operations, we measured execution times as we
increased the number of IPUs while keeping the problem
size constant. Our test case used a sparse matrix derived
from discretizing the Poisson equation on a 200×200×200
grid, containing approximately 58 million non-zero entries. We
measured performance both with and without halo exchanges

to assess communication impact. As shown in Figure 5, our
framework achieves remarkably near-ideal strong scaling for
SpMV operations.

The small deviation from perfect linear scaling can be
attributed to a fundamental property of domain decomposition.
As we distribute a fixed-size problem across an increasing
number of IPUs, each processor handles fewer matrix rows,
which alters the computation-to-communication ratio. This
occurs because the surface-to-volume ratio of the decompo-
sition increases—when a domain is partitioned into smaller
subdomains, the proportion of boundary elements relative to
interior elements grows. Consequently, the communication
volume of halo exchanges increases non-linearly with the
number of IPUs, as more elements must be shared across
processor boundaries.

For our weak scaling analysis, we employed matrices re-
sulting from discretizing the Poisson equation, ranging from
58 million to 890 million non-zero entries. We maintained
a constant computational load per IPU by adjusting the dis-
cretization grid size to ensure each tile processed the same
number of rows. Figure 6 demonstrates our framework’s ideal
weak scaling performance for SpMV operations.

While the total communication volume increases linearly
with the number of IPUs, the time required for halo exchange
remains constant. This is made possible by the IPU’s all-to-
all communication fabric, which allows all tiles to exchange
separator regions with their neighbors simultaneously without
incurring additional latency as the system size grows.

C. Mixed-Precision Iterative Refinement

The MPIR method enables our framework to achieve high-
precision solutions for large, sparse linear systems on the IPU,
which does not natively support double-precision floating-
point operations.

To demonstrate this, we compared the convergence be-
havior of a PBiCGStab+ILU(0) solver in four configurations
on the Geo 1438 and af shell7 matrices: without Iterative
Refinement (IR), with IR, and with Mixed-Precision Iterative
Refinement (MPIR) in combination with the double-word
arithmetic (DW) and soft-float double-precision (DP). For each
configuration, the solver performed 100 iterations before either
calculating an IR step or restarting directly. Figures 9 and 10
reveal that IR alone, without mixed-precision, did not improve
convergence behavior. Both non-MPIR configurations con-
verged only to a relative residual of 10−6, which is inadequate
for many applications. In contrast, the MPIR methods achieved
convergence to a relative residual of 10−13 (double-word) and
10−15 (double-precision) for both matrices, demonstrating a
significant improvement in the solver’s performance.

To assess MPIR’s computational overhead, we profiled the
execution of the MPIR+PBiCGStab+ILU(0) solver using the
double-word arithmetic on the G3 circuit matrix. For this
experiment, we chose 10 iterations for the PBiCGStab method.
As shown in Table IV, the double-word arithmetic operations
(Steps 1 and 3 in the MPIR method) required merely 2 % of
the total execution time. This minimal overhead is attributed

Matrix Rows Entries
G3 circuit 1.6 M 7.7 M
af shell7 0.5 M 17.6 M
Geo 1438 1.4 M 63.1 M
Hook 1498 1.5 M 60.9 M

Architecture Cores Memory TDP General purpose FLOPs
Intel Xeon 8470Q 52 CPUs 208 GB DDR5 350 W (CPU only) 2.3 teraFLOPS FP64

NVIDIA H100 SXM 14592 FP32
CUDA cores 80 GB HBM3 700 W (GPU only) 34 teraFLOPS FP64

GraphCore M2000
(4x Mk2 IPU) 5888 tiles 3.6 GB SRAM

+ 256 DDR4
1.100 W incl. peripherals,

420 W measured IPUs only 11 teraFLOPS FP32

TABLE II: Benchmark matrices TABLE III: Benchmark architectures

Operation Double-Word Double-Precision
ILU(0) Solve 75% 66%
SpMV 7% 6%
Reduce 12% 11%
Elementwise Ops 4% 3%
Extended-Precision Ops 2% 14%

TABLE IV: Relative computation times of all parts of the
MPIR+PBiCGStab+ILU(0) solver with different extended pre-
cision methods on G3 circuit. The BiCGStab method performs
10 iterations before calculating an IR step.

to the inner solver (PBiCGStab+ILU(0), Step 2) dominating
execution time with its 10 iterations.

These findings demonstrate that combining MPIR and
double-word arithmetics can effectively enable high-precision
solutions of large sparse linear systems on hardware lacking
native double-precision support, while incurring negligible
computational overhead.

D. Comparison with CPUs and GPUs

To bring the performance of our framework into relation,
we compared the execution times of SpMVs and the total
time for the IR-PBiCGStab+ILU(0) solver to converge on the
IPU, CPU and GPU architectures. SpMVs are fundamental
operations in many solvers and can be seen as a representative
benchmark for an architecture’s performance in sparse linear
algebra [32].

1) SpMV: We evaluated SpMV execution times across
the IPU, CPU, and GPU using various matrices. Figure 7
illustrates that the IPU outperformed the GPU by a factor of
13x to 19x and the CPU by a factor of 55x to 150x. This
substantial performance gain on the IPU can be attributed to
three primary factors: First, the IPU’s all-to-all communication
fabric is exceptionally well-suited for the communication
required for SpMVs. Second, the IPU’s cache-less architecture
eliminates cache miss penalties, allowing full utilization of
its processor performance. And third, the IPUs two-pipeline
processor architecture allows for the simultaneous execution
of a floating-point instruction and a load, store or integer
instruction, which we found particularly beneficial for SpMVs.

2) MPIR+PBiCGStab+ILU(0): We compared the time re-
quired for the (MPIR-)PBiCGStab+ILU(0) solver to converge
to a relative residual of 10−9 (euclidean norm) across different
platforms and matrices. Due to the lack of native double
precision, the IPU uses the MPIR method in combination
with double-word arithmetics. The CPU and GPU uses native
double precision without MPIR. Figure 8 demonstrates that
the IPU outperformed the GPU by a factor of 5x to 36x and
the CPU by a factor of 3x to 7x.

Interestingly, the CPU performs significantly better in this
test than in the SpMV benchmark. This improvement is likely
because the ILU preconditioner is particularly well-suited to
the CPU architecture and not as advantageous for IPUs as
initially anticipated. Decomposing the domain across such a
large number of small subdomains has a substantial negative
impact on the effectiveness of the ILU preconditioner, as it
completely disregards halo values.

This effect could potentially be compensated for by em-
ploying methods such as the Schur complement [33], which
requires solving an additional linear system of equations
comprising only the halo values of all tiles. However, this
approach is not currently implemented in our framework and
would likely necessitate a multi-step process [34], as the
resulting additional matrix would likely be too large to be
solved on a single tile.

VII. RELATED WORK

While the IPU is designed mainly for machine learn-
ing applications, research has also explored its potential for
various non-ML tasks. These include DNA and protein se-
quence alignment [35], breadth-first search (BFS) [36], particle
physics simulations [37], and skewed matrix multiplication
[38]. However, to the best of our knowledge, our work is the
first to solve sparse linear systems on IPUs.

Two studies are particularly relevant to our work because
they focus on mesh or grid computations, which could be
represented as sparse matrices. Still, none of them solves a
linear system of equations.

BUCHARD ET AL. investigated unstructured mesh computa-
tions on IPUs, using cardiac simulations as an example [12].
Their approach involves explicitly integrating an ODE on an
unstructured mesh, which is performed by just two hand-
written codelets.

LUOW AND MCINTOSH-SMITH examined the use of IPUs
for traditional HPC applications [39]. Their study included
stencil computations and a Lattice-Boltzmann fluid simula-
tion, albeit on structured grids. Notably, they observed that
“Expressing our chosen HPC problems in Poplar was not
always straightforward compared with familiar HPC technolo-
gies such as OpenMP, MPI, and OpenCL”. This observation
aligns with our experience and motivated our development of
CodeDSL and TensorDSL for improved ease-of-use.

VIII. SUMMARY

This paper presented a novel, open-sourced framework [1]
for solving large sparse linear systems on IPUs. We intro-
duced two DSLs, CodeDSL and TensorDSL, that enable the

expression of complex algebraic algorithms in a notation close
to mathematical formalism. These DSLs are symbolically
executed to generate the dataflow graph, execution schedule,
and codelets required by the IPU’s programming model.

We addressed the IPU’s lack of native double-precision sup-
port by combining the MPIR method with double-word arith-
metics, achieving high-precision solutions without compromis-
ing performance. Our framework implements a suite of parallel
linear solvers and preconditioners, including PBiCGStab and
ILU, optimized for the IPU’s unique architecture.

Our novel matrix reordering strategy enables efficient block-
wise halo exchanges utilizing the IPU’s all-to-all communi-
cation fabric. This strategy and the IPU’s cache-less design
contribute to the framework’s exceptional scaling behavior.

Our comprehensive evaluation demonstrated near-ideal
strong and weak scaling for SpMVs. Comparative benchmarks
revealed that our framework outperforms state-of-the-art CPU
and GPU implementations by up to 150x and 36x, respectively,
for SpMVs and iterative solvers at similar power draw.

These results highlight the significant potential of IPUs for
high-performance sparse linear algebra computations in scien-
tific and engineering applications. Our open-source framework
opens new avenues for leveraging specialized hardware in
computational science, extending the utility of IPUs beyond
their original machine-learning focus.

IX. ACKNOWLEDGEMENTS

We gratefully acknowledge support by the Federal Min-
istry of Education and Research (BMBF) under Grant No.
01IS22091.

REFERENCES

[1] T. Noack, Graphene Linear Algebra Framework,
Aug. 12, 2024. [Online]. Available: https://github.com/
esa-tu-darmstadt/graphene.

[2] Tile Vertex ISA, IPU2, GraphCore, Mar. 2022. [Online].
Available: https : / / docs .graphcore . ai / projects / isa / en /
latest/ static/Tile-Vertex-ISA 1.2.3.pdf.

[3] M. Naumov et al., “Amgx: A library for gpu accelerated
algebraic multigrid and preconditioned iterative meth-
ods,” SIAM Journal on Scientific Computing, vol. 37,
no. 5, S602–S626, 2015. DOI: 10 . 1137 / 140980260.
eprint: https : / /doi .org/10.1137/140980260. [Online].
Available: https://doi.org/10.1137/140980260.

[4] hypre Documentation, Release 2.31.0, Lawrence Liver-
more National Laboratory, Feb. 2024. [Online]. Avail-
able: https : / / hypre . readthedocs . io / / downloads / en /
latest/pdf/.

[5] Incomplete-LU and Cholesky Preconditioned Iterative
Methods, Release 12.6, NVIDIA Corporation, Apr.
2024. [Online]. Available: https://docs.nvidia.com/cuda/
pdf/Incomplete LU Cholesky.pdf.

[6] J. Scott and M. Tůma, “An introduction to sparse ma-
trices,” in Algorithms for Sparse Linear Systems. Cham:
Springer International Publishing, 2023, pp. 1–18, ISBN:
978-3-031-25820-6. DOI: 10.1007/978-3-031-25820-
6 1. [Online]. Available: https://doi.org/10.1007/978-
3-031-25820-6 1.

[7] D. R. Kincaid, T. C. Oppe, and D. M. Young, “Itpackv
2d user’s guide,” May 1989. DOI: 10 .2172/7093021.
[Online]. Available: https : / / www . osti . gov / biblio /
7093021.

[8] N. Bell and M. Garland, “Implementing sparse matrix-
vector multiplication on throughput-oriented proces-
sors,” in Proceedings of the Conference on High Per-
formance Computing Networking, Storage and Analysis,
2009, pp. 1–11. DOI: 10.1145/1654059.1654078.

[9] M. Joldes, J.-M. Muller, and V. Popescu, “Tight and rig-
orous error bounds for basic building blocks of double-
word arithmetic,” ACM Trans. Math. Softw., vol. 44,
no. 2, Oct. 2017, ISSN: 0098-3500. DOI: 10 . 1145 /
3121432. [Online]. Available: https://doi.org/10.1145/
3121432.

[10] M. Lange and S. M. Rump, “Faithfully rounded
floating-point computations,” ACM Trans. Math. Softw.,
vol. 46, no. 3, Jul. 2020, ISSN: 0098-3500. DOI: 10 .
1145/3290955. [Online]. Available: https://doi.org/10.
1145/3290955.

[11] T. Noack, TwoFloat: Double-Word Arithmetics in C++.
Aug. 12, 2024. [Online]. Available: https://github.com/
esa-tu-darmstadt/twofloat.

[12] L. Burchard, K. Hustad, J. Langguth, and X. Cai,
“Enabling unstructured-mesh computation on massively
tiled ai processors: An example of accelerating in silico
cardiac simulation,” Frontiers in Physics, vol. 11, 2023.
DOI: https://doi.org/10.3389/fphy.2023.979699.

[13] E. Anderson and Y. Saad, “Solving sparse triangular
linear systems on parallel computers,” Int. J. High
Speed Comput., vol. 1, no. 1, pp. 73–95, Apr. 1989,
ISSN: 0129-0533. DOI: 10.1142/S0129053389000056.
[Online]. Available: https : / / doi . org / 10 . 1142 /
S0129053389000056.

[14] J. H. Saltz, “Aggregation methods for solving sparse
triangular systems on multiprocessors,” SIAM J. Sci.
Stat. Comput., vol. 11, no. 1, pp. 123–144, Jan. 1990,
ISSN: 0196-5204.

[15] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C.
Stein, Introduction to Algorithms, Third Edition, 3rd.
The MIT Press, 2009, ISBN: 0262033844.

[16] T. A. Davis, Direct Methods for Sparse Linear Systems.
Society for Industrial and Applied Mathematics, 2006.
DOI: 10.1137/1.9780898718881. eprint: https://epubs.
siam.org/doi/pdf/10.1137/1.9780898718881. [Online].
Available: https://epubs.siam.org/doi/abs/10.1137/1.
9780898718881.

[17] R. K. Ghosh and G. P. Bhattacharjee, “A parallel search
algorithm for directed acyclic graphs,” BIT, vol. 24,
no. 2, pp. 133–150, Jun. 1984, ISSN: 0006-3835. DOI:

10.1007/BF01937481. [Online]. Available: https://doi.
org/10.1007/BF01937481.

[18] T. Noack, IPU Threading Library. Aug. 12, 2024. [On-
line]. Available: https://github.com/esa- tu-darmstadt/
ipu-thread-sync.

[19] C. B. Moler, “Iterative refinement in floating point,” J.
ACM, vol. 14, no. 2, pp. 316–321, Apr. 1967, ISSN:
0004-5411. DOI: 10 . 1145 / 321386 . 321394. [Online].
Available: https://doi.org/10.1145/321386.321394.

[20] N. J. Higham, Accuracy and Stability of Numerical
Algorithms, Second. Society for Industrial and Applied
Mathematics, 2002. DOI: 10 .1137/1 .9780898718027.
eprint: https : / / epubs . siam . org / doi / pdf / 10 . 1137 /
1.9780898718027. [Online]. Available: https: / /epubs.
siam.org/doi/abs/10.1137/1.9780898718027.

[21] N. J. Higham and T. Mary, “Mixed precision algorithms
in numerical linear algebra,” Acta Numerica, vol. 31,
pp. 347–414, 2022. DOI: 10.1017/S0962492922000022.

[22] J. Langou, J. Langou, P. Luszczek, J. Kurzak, A. Buttari,
and J. J. Dongarra, “Exploiting the performance of 32
bit floating point arithmetic in obtaining 64 bit accu-
racy (revisiting iterative refinement for linear systems),”
ACM/IEEE SC 2006 Conference (SC’06), pp. 50–50,
2006. [Online]. Available: https://api.semanticscholar.
org/CorpusID:2482611.

[23] A. Buttari, J. J. Dongarra, J. Kurzak, P. Luszczek, and
S. Tomov, “Using mixed precision for sparse matrix
computations to enhance the performance while achiev-
ing 64-bit accuracy,” ACM Trans. Math. Softw., vol. 34,
17:1–17:22, 2008. [Online]. Available: https : / / api .
semanticscholar.org/CorpusID:3047581.

[24] M. Joldes, J.-M. Muller, and V. Popescu, “Tight and rig-
orous error bounds for basic building blocks of double-
word arithmetic,” ACM Trans. Math. Softw., vol. 44,
no. 2, Oct. 2017, ISSN: 0098-3500. DOI: 10 . 1145 /
3121432. [Online]. Available: https://doi.org/10.1145/
3121432.

[25] H. A. van der Vorst, “Bi-cgstab: A fast and smoothly
converging variant of bi-cg for the solution of non-
symmetric linear systems,” SIAM Journal on Scientific
and Statistical Computing, vol. 13, no. 2, pp. 631–644,
1992. DOI: 10.1137/0913035. eprint: https://doi.org/10.
1137/0913035. [Online]. Available: https://doi.org/10.
1137/0913035.

[26] T. Sauer, Numerical Analysis, 2nd. USA: Addison-
Wesley Publishing Company, 2011, ISBN: 0321783670.

[27] M. Adams, M. Brezina, J. Hu, and R. Tumi-
naro, “Parallel multigrid smoothing: Polynomial ver-
sus gauss–seidel,” Journal of Computational Physics,
vol. 188, no. 2, pp. 593–610, 2003, ISSN: 0021-9991.
DOI: https://doi.org/10.1016/S0021-9991(03)00194-3.
[Online]. Available: https : / / www. sciencedirect . com /
science/article/pii/S0021999103001943.

[28] Y. Saad, Iterative Methods for Sparse Linear Systems,
Second. Society for Industrial and Applied Mathemat-
ics, 2003. DOI: 10.1137/1.9780898718003. eprint: https:

//epubs.siam.org/doi/pdf/10.1137/1.9780898718003.
[Online]. Available: https://epubs.siam.org/doi/abs/10.
1137/1.9780898718003.

[29] P. Castonguay and R. Strzodka, “System and method for
multi-color dilu preconditioner,” Patent US9798698B2,
Oct. 2017.

[30] R. Strzodka, J. Demouth, and P. Castonguay, “Par-
allel multicolor incomplete lu factorization precondi-
tioning processor and method of use thereof,” Patent
US9600446B2, Mar. 2017.

[31] T. A. Davis and Y. Hu, “The university of florida sparse
matrix collection,” ACM Trans. Math. Softw., vol. 38,
no. 1, Dec. 2011, ISSN: 0098-3500. DOI: 10 . 1145 /
2049662.2049663. [Online]. Available: https://doi.org/
10.1145/2049662.2049663.

[32] K. Asanovic et al., “A view of the parallel computing
landscape,” Commun. ACM, vol. 52, no. 10, pp. 56–67,
Oct. 2009, ISSN: 0001-0782. DOI: 10.1145/1562764.
1562783. [Online]. Available: https://doi.org/10.1145/
1562764.1562783.

[33] Y. Saad, “Schur complement preconditioners for dis-
tributed general sparse linear systems,” in Domain De-
composition Methods in Science and Engineering XVI,
O. B. Widlund and D. E. Keyes, Eds., Berlin, Heidel-
berg: Springer Berlin Heidelberg, 2007, pp. 127–138,
ISBN: 978-3-540-34469-8.

[34] S. Kocak and H. Akay, “Parallel schur complement
method for large-scale systems on distributed memory
computers,” Applied Mathematical Modelling, vol. 25,
no. 10, pp. 873–886, 2001, ISSN: 0307-904X. DOI:
https : / / doi . org / 10 . 1016 / S0307 - 904X(01) 00019 - 1.
[Online]. Available: https : / / www. sciencedirect . com /
science/article/pii/S0307904X01000191.

[35] L. Burchard, M. X. Zhao, J. Langguth, A. Buluç,
and G. Guidi, “Space efficient sequence alignment
for sram-based computing: X-drop on the Graphcore
IPU,” in Proceedings of the International Conference
for High Performance Computing, Networking, Stor-
age and Analysis, ser. SC ’23, Denver, CO, USA:
Association for Computing Machinery, 2023, ISBN:
9798400701092. DOI: 10 . 1145 / 3581784 . 3607094.
[Online]. Available: https://doi.org/10.1145/3581784.
3607094.

[36] L. Burchard, J. Moe, D. Schroeder, K. Pogorelov, and
J. Langguth, “Ipug: Accelerating breadth-first graph
traversals using manycore graphcore ipus,” in Jun. 2021,
pp. 291–309, ISBN: 978-3-030-78712-7. DOI: 10.1007/
978-3-030-78713-4 16.

[37] S. Maddrell-Mander et al., “Studying the potential of
graphcore® ipus for applications in particle physics,”
Computing and Software for Big Science, vol. 5, 2021.
[Online]. Available: https : / / api . semanticscholar . org /
CorpusID:257096474.

[38] S. K. Shekofteh, C. Alles, N. Kochendorfer, and H.
Froning, “On performance analysis of graphcore ipus:
Analyzing squared and skewed matrix multiplication,”

ArXiv, vol. abs/2310.00256, 2023. [Online]. Available:
https://api.semanticscholar.org/CorpusID:263333982.

[39] T. Louw and S. McIntosh-Smith, “Using the Graphcore
IPU for traditional hpc applications,” English, 3rd
Workshop on Accelerated Machine Learning : Co-
located with the HiPEAC 2021 Conference, AccML
; Conference date: 18-01-2021 Through 18-01-2021,
Dec. 2020. [Online]. Available: http: / /workshops.inf .
ed.ac.uk/accml/.

