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Abstract—Implementing convolutional neural networks (NNs)
on FPGAs has become more popular as top-down flows allow
designers to describe NNs in high-level languages and -easily
generate the corresponding FPGA bitstream. However, bitstream
generation is time-consuming, leading to long development times
in case of NN adjustments. This can be addressed by flows that
split the top design into blocks, cache their implementation,
and stitch them together to obtain a full bitstream. This way,
modifying only one block does not require the re-implementation
of the others. Yet, such algorithms don’t perform well for large
designs using most of the FPGA resources, which is often the
case for NNs. We show that, in such a scenario, the block’s size
is essential, and for a sample quantized convolutional NN with
the typical convolutional, fully connected, and max pool layers,
it leads to 15% more placed blocks. Therefore, we develop an
estimator for the block’s area constraints, which we successfully
use on the evaluated design to place it 1.37 times faster.

Index Terms—FPGA, Floorplanning, PBlock, RapidWright,
Neural Networks

I. INTRODUCTION

In scenarios where using a discrete GPU or other ML accel-
erator is not practical, e.g., in lower-cost / space constrained
embedded scenarios that already rely on a reconfigurable SoC
(rSoC) with an integrated FPGA, such as the Xilinx Zynq
or UltraScale+ MPSoC [3], as main control unit, NNs can
be realized efficiently on these rSoCs. In general, the energy
efficiency to execute the NNs in the reconfigurable logic on
these devices is far better than on their standard process-
ing cores, especially when custom numeric types (INT4/2/1,
FP8/4) can be employed in the NN that are not supported on
the currently used rSoC CPU cores, such as ARM Cortex-
A9. Furthermore, FPGAs are often used as a prototyping
vehicle before committing an NN into an ASIC for large-
volume deployment in systems that do not need the additional
capabilities of a GPU or programmable ML accelerator.

A major challenge when using FPGAs for NN inference is
that NNs often require more resources than those available
on device [24]. Strategies to overcome this include using
lower precision weights [25] or storing them externally [15].
While the first one often reduces the accuracy, the second
one increases the inference run-time. Fortunately, the growing
interest in FPGAs [2] led to larger devices [3], which in turn
facilitates the mapping of larger NNs. Since implementing a
design on an FPGA is an NP-complete problem [23], larger
designs lead to significantly longer compilation times. This

conflicts with the fact that FPGAs are often used in early
design phases for quick testing of different architectures.
However, if changing some parts of an NN leads to high
compilation run-times, FPGAs become unattractive.

Existing electronic design automation (EDA) tools provide
different mechanisms to reduce the tool run-time for large
designs (e.g., incremental flows [5], [13]). However, their
speedup is usually achieved only for small design changes.
For example, an industrial EDA tool optimized for mapping
to AMD FPGAs can achieve a 2x speed-up if at least 95% of
the design is reused [5]. Unfortunately, the required NN design
updates are often larger, as architecture changes in one layer
also influence the wiring and processing of adjacent layers.

Another possible approach is to utilize dynamic partial
reconfiguration such that only updated logic must be rebuilt.
This is a powerful feature, as the user can load the modified
bitstream of a single module, while the rest of the design is still
running. Yet, the design and FPGA area must be partitioned
offline, and the updated module might have a much higher
or lower resource usage than the assigned FPGA area. In the
first case, the reconfiguration is unfeasible. In the latter one,
the module uses fewer resources than assigned, wasting area.

Another alternative for speeding up the implementation of
large designs is given by algorithms that make use of pre-
implemented blocks, such as RapidWright (RW) [18]. RW
assumes that an FPGA design is constructed from multiple
blocks/modules connected together in a diagram. The tool
identifies unique block configurations and implements each
of them independently, resulting in pre-implemented blocks,
which are relocatable placed and routed netlists. Afterwards, it
replicates and places on device all the pre-implemented blocks
as necessary to reproduce the original diagram, and connects
them to obtain a full bitstream. With RW, if only a single
module needs to be modified, re-implementing the others is
not required, thus speeding up the compilation.

Algorithms based on pre-implemented blocks have draw-
backs as well. While separately implementing each module,
RW constrains its placement inside of a placement area
block (PBlock in AMD terminology). The PBlock size highly
impacts the quality of the final placement: If the PBlock con-
straint is too loose, the implemented module could waste area,
and if the constraints are too tight, the module’s placement
and routing could fail. The first contribution of this paper
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Fig. 1. RapidWright (RW) algorithm for the PBlock area constraints.

is implementing the cnvWIAI NN [1] for the RW-flow to
show that PBlock constraints impact the allowed NN size for
a feasible FPGA placement. It is a VGG-inspired quantized
network with the typical convolutional, fully connected, and
max pool layers, such that the concepts shown here are
transferable to other such convolutional NNs.

While the first contribution of our work highlights the
importance of the PBlock size, the second contribution focuses
on developing a PBlock estimator. In order to evaluate the
required number of FPGA resources for a given module,
RW synthesizes and optimizes the design and runs a fast
placement. Based on the information gained from these runs,
it estimates the size of a valid PBlock, as shown in Figure 1.
A valid PBlock constraint has sufficient resources, such that
the module is fully placed and routed within its boundaries.
Otherwise, the flow will stop. To avoid such a failing run,
RW applies a correction factor (CF) to the resource number.
However, since this factor is a constant, it is not tailored to the
design being implemented, and results are often sub-optimal.
The second contribution of this paper is an estimator for this
CF, which leads to faster implementation run times during
the stitching process, as well as better quality of results, most
notably allowing the mapping of larger designs. We evaluate
different machine learning algorithms, among which the best
result has a relative error below 5%.

II. RELATED WORK

There are multiple approaches for speeding up FPGA com-
pilation. One solution is to tweak the compilation algorithms.
An alternative is to reduce the size of the circuit to be compiled
through the re-use of pre-compiled modules [20]. Our work
focuses on the latter one, as our application scenario represents
the design space exploration of NNs, where the user re-
compiles the design after modifying only parts of the neural
network.

The community already offers some solutions using pre-
compiled modules. PRFlow [9] is such an example and uses
partial reconfiguration. The design consists of multiple parti-
tions which can be independently recompiled at run-time. They
use a packet-switched network for the communication between
the partitions. On the one hand, such a communication network
becomes a critical overhead as our NN-based application
scenario already utilizes most of the FPGA resources. On
the other hand, in the case of partial reconfiguration, the
partitions are defined at compile time and can not be resized
at run-time. Adjusting them to fit the updated module can
only be done offline, which brings us back to the class of

tools generating the full bitstream at compile-time, such as
HMFlow [20]. It proposes a flow that separately compiles all
the blocks of a design and stitches them together to form a
full FPGA bitstream. For interacting with the FPGA vendor’s
format, HMFlow uses RapidSmith [21], which was further
continued as RapidWright [18] (RW). It has Java classes for
communicating with the vendor’s format but also to facilitate
an HMFlow-like flow with pre-compiled modules. DynaRapid
[12] is an example project using RW to speed up bitstream
generation for the elastic circuits created by the Dynamatic
HLS tool [14]. While RW uses the AMD format, BPR [7] is a
tool using pre-compiled circuits, but for the Intel format. We
use RW in this work, as it is currently well supported, and the
main concepts can be replicated also to other FPGA vendors.

Although RW can speed up compilation [16], it poses some
challenges when placing large designs, as we will show in
Section IV. This is partly due to the area constraints applied
when individually implementing the modules. In RW, the pre-
compiled modules are placed and routed within a rectan-
gular bounding box, called in AMD terminology a PBlock.
It consists of multiple slices, which are made of different
resources, such as LUTs, MUXes, and FFs. As we deal with
large designs, estimating the PBlock size for efficient resource
utilization is the main topic of this paper.

There are already numerous approaches for estimating
FPGA resource usage. Among the ones that address estima-
tions based on a high-level specification of the design, some
do not take into account synthesis optimization [11], leading
to low accuracy. Other focus only on certain components (e.g.,
shifters, adders, multipliers) [22], or estimate the resource
usage in LUTs and register numbers [6]. In contrast, we focus
on estimating the geometric PBlock area constraints, while the
LUTs and FF numbers are already known from the synthesis
results. An estimator for the FPGA slice number is given in
[8], but it focuses only on certain application examples (e.g.,
floating and fixed point IP cores). A more accurate model is
proposed in [28] based on a predicted LUT mapping, which
unfortunately leads to long run times. In contrast, [26] targets a
fast slice number estimation, but their results are based solely
on LUTs and FFs. In our work, we show that also other
factors can impact the PBlock size, like FF resets, fanout, or
carry chains. Last but not least, we target FPGA slice number
estimation for PBlocks, which by definition have rectangular
shape constraints, and this is not taken into consideration in
any of the work above.

There are some works highlighting the importance of the
selected PBlock size as part of a RW-like flow. They observe
its impact on frequency [19], [7], and block relocation during
the stitching process [17], but they don’t propose and analyze
a PBlock estimator, or they use a simple model based solely
on the LUTs and FFs number [27]. During our analysis,
we observed that this is not enough for an optimal PBlock
estimator; hence, we searched for an improved model.



ITII. APPLICATION SCENARIO

The community offers end-to-end flows for mapping NNs
to FPGAs. One such example is the FINN [10] framework.
The user defines an NN in Python, which undergoes multiple
transformations and, in the end, is compiled to a bitstream
that can be run on an FPGA. Modifying the NN in the
search for the best configuration is fast, thanks to the high-
level languages. However, during this process of design space
exploration (DSE), FPGA compilation becomes a bottleneck.
Through traditional flows, updating one part of the NN would
require re-compiling the entire design. It was shown in [16]
that this could be accelerated through rapid prototyping tools
like RW, which make use of pre-compiled modules. As this
was already proven in prior work, we will not focus here on
the run-time but rather on another challenge we confronted
while using RW. During our experiments, we encountered the
issue that convolutional NNs usually take up many resources
and RW has difficulties placing designs that use most of
the FPGA’s area. One solution is using a larger FPGA.
However, during DSE, switching between FPGAs to match
RW requirements is sub-optimal. To illustrate the challenges
and proposed solution, we showcase a NN using most of the
FPGA resources, and we design it for the RW flow.

Because FINN provides an end-to-end flow facilitating
fast DSE, we chose one of its supported NNs, namely the
cnvWIAI network [1], aiming to achieve a fast NN architecture
exploration by leveraging the speed ups brought by RW.
However, the circuit generated through FINN was a monolithic
block, while RW expects as input a block design with multiple
interconnected blocks. The granularity, i.e., coarse or fine, of
these modules impacts the tool’s run-time [19]. One approach
would be to divide the NN layer-wise, thus having a block
per layer. However, each layer would be instantiated only
once in the design. Thus, the placed and routed netlist of one
block would not be reused for other instances, which is the
main selling point of RW. Yet, NNs usually have a regular
structure. To use this to our advantage, we select the design’s
granularity such that we have separate blocks for implementing
the matrix-vector activation unit (MVAU), the sliding window,
the activation, as well as the max pool units. The NN has
nine convolutional and fully connected layers, and two max
pool layers (Figure 2). Its structure is typical for convolutional
NNs such that the concepts presented here are transferable.
The partitioned design has a total of 175 blocks. Thanks to
the NN’s regularity, the number of unique instances is lower,
namely just 74. The highest reuse is for the MVAU units.
Layers one and two have the same MVAU configurations (48
identical instances), as do layers three and four (20 identical
instances). This high reuse of the same module highlights that
this is a valid application case for a flow with pre-implemented
modules such as RW. In general, such high reuse is typical for
convolutional NNs, which commonly have multiple instances
of the same processing element within a layer. Unfortunately,
RW is not able to fully place the sample design, although
the cnvWIAI is one of the smaller NNs using only 1 bit for
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Fig. 2. Block design of the implemented cnvWI1Al NN.

weights and activation [1]. The causes are analyzed in the
following section.

IV. THE IMPORTANCE OF A PBLOCK ESTIMATOR

RW was not able to fully place the cnvWIAI design on
a xc7z020 device. Among the causes, we identified that the
PBlock had a huge impact, which we demonstrate here.

For our analysis, we first evaluated the cnvWIAI NN on a
xc7z020 device by compiling it with the EDA tool for AMD
FPGAs, version 2024.2. The tool was able to fully place and
route the entire design. The corresponding implementation is
shown in Figure 5a) and uses 99.98% of the device slices.

Subsequently, we implemented the same block design also
with RW. In order to generate a bitstream, the original RW
algorithm first identifies the unique blocks in the block design.
It then synthesizes and optimizes each of them separately.
Afterward, it creates rectangular area constraints (PBlocks) for
each block, which will later be used as a bounding box for
the place and route step. These area constraints are estimated
as shown in Figure 1, based on resource usage, and geometric
shapes of a quick placement. The estimated slices are then
multiplied by a constant correction factor (CF) of 1.5 to obtain
the final PBlock shape. After the modules are individually
placed and routed within the PBlock, RW stitches them all on
the FPGA to form a complete design bitstream.

The flow did not achieve a full placement, and while
analyzing the results, we noted that it was mainly due to the
floorplanning of the individual modules, which motivated this
paper. We observed many unused slices between the blocks.
This can be explained by visualizing the separate placements
of the modules. Figure 3 illustrates the placement of the largest
block in the design (weights_14), with 1529 slices, and of
a much smaller one (mvau_18), with 31 slices. The constant
PBlock CF of 1.5 leads to irregular shapes for both modules.
When the stitcher places all separately implemented blocks
on the device, it checks for overlapping logic. Naturally, the
more irregularities there are in the separate placements, the
harder it is to bring them closer. This leads to “dead spots”
in the stitched placement, although there still are unplaced
blocks. In contrast, when implementing these blocks within
the smallest feasible PBlock, their placement becomes more



Fig. 3. Implemented blocks with a constant PBlock correction factor (CF) of
1.5 versus 1 for the: a) weights_l4 and b) mvau_I8 modules.

TABLE I
SYNTHESIS RESULTS OF THE cnvWIAl
RW PBlock RW PBlock AMD EDA
Slices Longest Path (ns) Slices
CF* 1.5 1 1.5 1 -
mvau_l8 31 28 4.829 5.769 30,34,32,29%*
weights_l4 | 1529 | 1371 | 10.767 | 13.478 1430

*CF = Correction Factor **mvau_l8 has four instances. RW reuses a single
implementation for all four, AMD EDA implements each of them

rectangular. This also helps the simulated annealing algorithm
of the stitcher to reduce the illegal moves caused by overlaps.

Apart from the placement regularity, it can be observed
that when implementing the module with the smallest feasible
PBlock constraints, fewer slices are used (Table I). A more
compact PBlock can be placed more easily to avoid clock
distribution columns, which worsen the circuit’s timing [19].
Note that looser PBlock constraints often lead to more used
slices than the AMD Tool. This is probably because the latter
uses 99.98% of the available slices, forcing the algorithm to
optimize area. While the utilization improves with harsher
area constraints, the timing is affected. Still, the main issue
is the incomplete placement of the entire design, such that the
circuit’s timing is a secondary criterion.

We further conducted an analysis in which we determined
with a 0.02 resolution the minimal CF of the NN’s modules,
for which the place and route is still feasible. Figure 4 shows
the resulting distribution for cnvWI1A1. The values below 0.7
correspond either to very small modules or to modules whose
area constraints are driven by the block RAMs. In both cases,
further reducing the CF would not change the actual PBlock
size. The highest CF was 1.68. In a setup using a constant
CF, the user must set it to 1.68, such that all modules have
a feasible implementation and the tool flow does not stop. In
this case, the example NN has 68 remaining unplaced modules
after the stitching step (Figure 5b). In contrast, using the
optimal CF (tightest feasible PBlock) for all modules leads to
52 unplaced modules (Figure 5c). The highlighted instances
correspond to the module in Figure 3b, and they are better
integrated into the final placement when using the optimal CF.
The remaining unused FPGA columns exist because PBlocks
can be relocated only on columns having the same resource
type, which again favors more compact PBlocks.

Nr. of module
instances of the
block design

R
ONBOONAD

Fig. 4. Distribution of the optimal CF for the blocks of the cnvWI1AI design.
The vertical axis shows the number of blocks which have the CF on the
horizontal axis.

a b) <)

Fig. 5. Placed and routed cnvWIAI using a) AMD EDA tool b) RW with a
constant PBlock CF of 1.68, and ¢c) RW with a minimal feasible CF.

V. FACTORS IMPACTING PBLOCK SIZE

To build an accurate PBlock estimator, we analyzed the
factors impacting the PBlock size for the Zynq 7 FPGAs.
These will be used as features in our estimator.

A. CLB type

AMD FPGA s have a regular structure, and one of their basic
building blocks is the configurable logic block (CLB). It con-
sists of slices, which can be of either L or M-type. They differ
because the latter also supports shift registers and distributed
RAMs. M-type CLBs have an M-type and L-type slice. A
design requiring many M-type slices will automatically infer
many M-type CLBs. As these also contain an L-type slice, the
module will implicitly be assigned additional resources, which
must be considered when sizing the PBlock.

B. Control set conflicts

Any SRL, LUTRAM, or register is controlled by a set of
signals such as reset, clock, or enable. The grouping of such
signals is called a control set [4]. Two registers belonging to
different control sets can not be placed within the same CLB.
Therefore, when selecting the CF, we must consider that some
CLBs might be under-utilized due to control set conflicts.

C. Carry Chains

A carry chain requires a specific shape for the area con-
straints, which is given in the shape report generated by RW
after the quick placement (Figure 1). Without it, the algorithm
could generate the wrong PBlock width and height, and lead
to an infeasible placement despite having sufficient resources.

D. High fanin/fanout signals

High fanin/fanout signals imply more routing effort, which
typically requires larger PBlocks for more routing channels.
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Fig. 6. Template for generating the RTL data set for the PBlock estimator.

E. High density designs

A slice of the 7-series device contains four LUTs, one carry
chain segment, and eight FFs. If a module requires the same
number of slices for the FFs, LUTs, and carry elements, the
probability that all of them will be packed in the same slices
is lower due to congestion. Thus, the PBlock will probably
need a higher CF.

VI. IMPLEMENTATION

This section covers two aspects: data set generation and
possible implementations of an improved PBlock estimator.
Further estimator characteristics are discussed in Section VII.

A. Data Set Generation

For an accurate estimator, the training set is crucial and must
cover all the particularities highlighted in Section V. Instead
of varying the implementation of the cnvWIAI modules, we
approached a more generic solution and implemented multiple
register-transfer level (RTL) generators.

One of the generators covers the corner case of a design
containing mostly FFs. It consists of shift registers with a
parametrizable number of control sets and fanin. A tool
attribute was used to avoid their implementation within LUTs.
In contrast, the second generator focuses on modules with
no registers at all, having mainly LUTRAMSs. The memory’s
width and depth are parametrizable. The third generator fo-
cuses on carry chains. It consists of a basic sum of squares
with parametrizable data widths. The fourth generator aims to
use FFs, LUTs, carry, and shift registers and is implemented
as multiple linear-feedback shift registers (LFSRs). The rest of
the RTL generators contain all the resources mentioned above
and are parametrizable. One example is illustrated in Figure 6.
Although it does not have a meaningful application, its purpose
is to cover as much of the design space as possible.

In total, the generated data set contains around 2,000
modules, and the resource usage distribution is shown in
Figure 7. The largest modules have around 5000 LUTs (11%
of the device). We did not generate larger modules, as RW
yields the best speed-ups for partitioned designs with high
regularity. Thus, larger blocks would not fit this scenario well.

B. Selecting an estimator type for the CF of the PBlock

This paper considers four approaches for the estimator of
the CF used in the PBlock generator (Figure 1). One employs
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Fig. 7. Design space coverage based on the RTL generators. The three-
dimensional diagram shows from two perspectives the LUTs (green), FFs
(purple) and Carry (yellow) usage.

linear regression, the second relies on a NN, while the last
two are tree-based.

For linear regression, we used the following parameters
which were introduced in Section V. The first two are given by
the maximum fanout and the number of control sets. The third
one is denoted here as PBlock density and it encompasses the
idea that modules having slices filled with all three types of
resources (LUTs, FFs and carry) commonly require higher CFs
compared to designs with one resource type (Section V-E).
The fourth parameter is the ratio between the required M-type
slices and the estimated total amount of slices. Another input
parameter focuses on the ratio between the carry cells and the
estimated total number of slices. The last input parameters are
gained from the shape report described in Section V-C.

The second implementation of the estimator is NN-based. A
shallow feed-forward network with only one fully connected
hidden layer is used due to the small number of inputs. We
varied the number of hidden neurons finding that 25 neurons
provide robust results for our training set. We are using a fully-
connected NN instead of a convolutional NN as the inputs
represent distinct features. Dropout was considered but not
used in the final design, as it did not improve the training
and test performance. The common activation function ReLu
(rectified linear unit) is used to add non-linearity to the model.
Finally, the optimization algorithm ADAM [14] adapts the
weights of the network to minimize the mean squared error
(MSE) between the predicted and the actual minimal CF.

Additionally, we implemented a random forest (RF) based
solution. It combines the predictions of 1000 decision-trees
(each with a depth of 20) to estimate the minimal CF. The
mean squared error (MSE) was used to train the RE. Compared
to the NN approach, the expressiveness of the RF seems rather
limited. However, while we had to deal with a black box in
the NN, the RF approach provides interesting insights into the
decision-making and into the relevance of the different fea-
tures. While the implementation itself might be of interest we
consider the evaluation of the feature importance (see Section
VII) as most relevant for further research. By analyzing the
importance of the different input parameters in the decision
making, we note an advantage of relative parameters.

We further decreased the estimator complexity by using a
single decision tree (DT) with a depth of 20 and analyzed the
importance of the carefully selected features (see Section VII).
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TABLE I
RELATIVE ERROR OF THE PROPOSED ESTIMATORS

Features Classical | Classical* | Additional All
Decision Tree Error 7.4% 7.4% 5.4% 5.2%
Random Forest Error 6.2% 5.9% 4.8% 4.9%
Neural Network Error - - - 5.1%

C. Resolution

When searching for the optimal CF, the magnitude of the
search step is essential. It was observed that designs with less
than approximately 100 LUTs would not require a search step
lower than 0.1. Because of the constant PBlocks aspect ratio
(W/L in Figure 1), a circuit’s modification smaller than 10%
would not make a difference for such small designs. However,
it was observed for designs having around 2,500 LUTs that
the CF should not be higher than 0.03. As 85% of our data
set has less than this resource usage, we selected a search step
of 0.02. If the feature set is selected carefully, the results will
be comparable for a lower magnitude of the increment step.

VII. EVALUATION

Before testing the estimators, the quality of the input data
must be evaluated. After generating the RTL data set illustrated
in Figure 7, the minimum CF (Figure 1) is determined by
starting from a factor of 0.9 and increasing it by 0.02 till a
feasible placement within the PBlock is found. Unfortunately,
the obtained CF has an uneven distribution. This is also
due to the fact that during parameter sweep, some modules
have generated more instances than others. In order to avoid
focusing the training process only on a specific area in the
design space, we filtered the input data to obtain a more
even distribution. Still, our dataset remains biased, which is
important for the following evaluation. An upper limit of 75
samples was set for each CF after shuffling the data. The
distribution of the input data is shown in Figure 8. By setting
an upper limit, the data set was decreased from 2, 000 to 1, 500
samples. For all four PBlock estimator approaches, 80% of the
data was used for training and the remaining part for testing.

The linear regression function described in Section VI-B
taking nine inputs returned a mean relative error of 9.4%.
It is significantly higher compared to the other proposed
algorithms, which are shown in Table II.

Table II illustrates the relative errors (minimal versus es-
timated CF) of the NN, RF, and DT-based solutions, while
Figure 9 shows the impact of each chosen feature set. The
”Classical Features” (”Classical” in Table II) contain the

number of LUTs, CLBMs, FFs, control sets, and carry ele-
ments, as well as the maximal fanout. The extended “Classical
Features with Placement Features” (”Classical*” in Table II)
additionally uses the estimated shape area, obtained from
the quick placement in RW (Section V-C). To develop size-
invariant features, the ”Additional Features” (”Additional” in
Table II) use relative amounts, and their expression is given
under the green bars in Figure 9. In the end, we also use all the
features together as ”All Features” ("All” in Table II). While
the errors of the RF and DT algorithms are shown for each
feature set, we fed all our features to the NN to get the best
possible performance. We make the following observations:

o The RF approach is slightly better than a single DT,
which can be reasoned by the fact that the RF combines
the estimated output of N (set to 1,000) trees instead of
using just one.

o Our proposed ”Additional Features” outperform the (ex-
tended) classical features in both approaches and are
invariant to the circuit size.

e The placement features do not seem to improve the
performance significantly compared to other features.

o For RF, the precision of our ”Additional Features” is not
improved by using all of the features (adding absolute
numbers). For the DT approach, the difference is small.

o Comparing the relative mean error, the NN approach pro-
vides a similar accuracy as the two tree-based solutions.
Thus, increasing the expressiveness of our estimator does
not always lead to better results.

To get a better understanding of our implemented estimators,
we show in Figure 10 the predictions along with the true cor-
rection values (green line). The estimates for the different CFs
confirm our previous observations. Our proposed Additional
Features”, as well as "All Features”, clearly perform better
than the classic features. This is observed in particular on
high CF values. Considering our biased data set, it is harder for
learn-based algorithms to predict high CFs. Still, our proposed
relative features seem to overcome this challenge by reaching
an error below 5% for the generated data set.

Even more interesting than the achieved mean error is the
fact that the most successful feature-set, ” Additional Features”,
contains only relative values (given in Figure 9). The red
bars are the most dominant for the relative features, which
shows that these are the preferred ones even when all features
are available. For each feature-set, the sum of the importance
values is 1. Note that the relative number of Carry elements
(Carry/All) has a value of 0.5 for ”Additional Features” and of
0.4 for all features. Thus, even when having all the available
features, this single one makes up 40% (0.4) of the decision.

In the end, our evaluation proves the effectiveness of
learning-based strategies by reaching an error below 5% for the
generated dataset. Furthermore, hand-crafted relative features
clearly outperformed the raw input data, motivating further
research.



wn

mm Classic Features
wem Classic Features with Placement Features

=

= Additional Features
W= All Features.

Feature Importance
© © o o o o©
O VW

(,a‘d ‘\00 e oﬁb"\ QVW(\O a\\eﬁ o ‘\\\de‘f‘ d\P «;\P\ V‘\\\)5 c\jb“\ A
Feature Co(\‘
Fig. 9. Importance of different features when using a single DT. The sum of

the importance of all features is 1. The importance of 1 for a single feature
would mean that the output solely depends on this input.

Classic Features Additional Features

et
215 8 15f
£ £
o 14 o l4r
3 3
313 A 3131
g12 g12f
g - 2
911 2 11r
& &
1.0 1.0[
09 10 11 12 13 14 15 16 17 09 10 11 12 13 14 15 16 17
Actual Overhead Actual Overhead

Classic Features with Placement Features All Features

g15

£

g 14

3

‘c13

g

g12 2f
g

911 k-
& &

1.0 1.0f

09 1.0 11 12 13 14 15 16 1.7 09 10 11 12 13 14 15 16 17
Actual Overhead Actual Overhead

Category
Predicted by DT
1.5 — Predicted by RF
L True

—— Predicted by NN

redicted Overhead
-
w

Fig. 10. Predicted versus actual (minimal) correction factor value.

VIII. ESTIMATOR IMPACT

The sparse placement of the cnvWIAI NN on the FPGA
motivated the need for a PBlock estimator, and here we
evaluate its impact on the NN.

First, we implemented the blocks of the cnvWIAI NN using
the different estimator types. We removed the modules that
had one or two tiles from the evaluation, as their PBlock is
straightforward and they do not require an estimator. Figure
11 shows in orange the estimated versus the actual CFs for
the 63 implemented modules when using linear regression
(median absolute error of 11.03%). Figure 12 confirms the
observation from Section VII that the ”Additional Features”
contribute more to the evaluation, thus we used them also for
the NN-based estimator (median absolute error of 9.5%).

Secondly, we analyzed how such an estimator impacts the
final placement of the design. Our goal is to obtain tight area
constraints with minimal effort, having two main criteria:

o run-time: we used RW to speed up compilation time,

therefore, this still remains an essential criterion
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Fig. 11. Actual versus estimated CF when using linear regression.
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e PBlock density: we aim for smaller PBlocks with a
compact placement of the module, such that we can place
more instances on the FPGA (motivated in Section III)

When using the NN estimator on the cnvWIAI design,
52.7% of the modules are implemented from the first run. For
the underestimated CFs, we increment the correction factor
by 0.1 and when a feasible correction factor is found, the last
interval is searched with a resolution of 0.02. If we compare
our estimator-based approach with a constant-CF approach,
where the initial CF=0.9 (to aim for compact PBlocks), the
version using a constant CF needs 1.8 times as many tool
runs as our estimator-based approach for block compilation.

An estimator that mainly underestimates the CFs will lead
to more tool runs, but provide more compact, area-efficient
PBlocks. Therefore, by adding an overhead to the estimator,
the user can adjust which of the two goals (run-time versus
PBlock density) is more critical to the application scenario.

Of the 63 estimated CFs, 31.75% have an error below
4% when compared to the minimal CF, leading to compact
PBlocks. We further show how this impacts the full placement
of the design on an xc7z045 device. RW uses simulated
annealing (SA) to place all the pre-implemented modules and
reconstruct the block design. The RW SA cost function is
defined based on the wire length between the blocks, which,
naturally, should be small. As was elaborated in Section IV,
tighter PBlocks make the placement of the individual modules
more rectangular, which eases bringing the blocks closer to
each other and reduces the number of illegal steps in SA.
With our estimator, the SA algorithm converged 1.37 times
faster. Moreover, the final SA cost was 40% lower when using
a PBlock estimator, versus a constant CF of 1.68 (1.68 was
motivated in Section IV). This can also be visualized in Figure
13, where the placement using an estimator has less wasted
area between the blocks. This again highlights the importance
of a PBlock estimator in a flow using pre-compiled blocks.
Apart from the PBlock size, an important aspect is its position,
which leads to the empty columns in Figure 13. However, their
position is not studied here and is of interest for future work.

IX. CONCLUSION

Mapping NNs on FPGAs is challenging due to the high
resource usage and compilation times. In this work, we
partitioned the cnvWIAI NN to compile it with a rapid
prototyping technique using pre-implemented modules. We



Fig. 13. Comparison of the fully placed cnvWIA1 when using a constant CF
of 1.68 (left) versus our proposed estimator (right).

showed that the size of the actually placed design depends
on carefully selecting the area constraints (PBlock) for the
individual design blocks. These are computed based on the
resource usage, multiplied by a correction factor (CF) for
which we implemented an estimator using four approaches:
linear regression, NN, decision trees, and random forest. Our
data set contained designs with resource usages between 12
and 5,000 LUTs and a CF between 0.9 and 1.7. Through
our estimator, the global placement algorithm converged 1.37
times faster and with a lower cost. Our findings bring us
closer to mapping large NNs to FPGAs using rapid prototyping
techniques with pre-implemented modules.
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