
SCOoOTER: A RISC-V Processor Framework and Tool Flow for an
Architecture-to-Layout Design Course

Markus Scheck
Yannick Lavan
Christoph Spang
Andreas Koch

{scheck,lavan,spang,koch}@esa.tu-darmstadt.de
Technische Universität Darmstadt

Darmstadt, Hesse, Germany

Abstract
This paper introduces SCOoOTER, an open-source, highly-config-
urable RISC-V processor designed for courses on advanced pro-
cessor architecture and design, reaching from architecture down
to chip implementation. SCOoOTER offers students the opportunity
to explore and extend processor functionality through a modular
architecture and a wide range of configuration options, incorporat-
ing advanced architectural concepts such as dynamic instruction
scheduling, speculative execution, branch prediction, and multi-
threading, providing a rich environment for hands-on learning.
The processor is integrated with several educational tools, such
as automated testing suites, debugging tools, built-in performance
evaluation, and FPGA and ASIC design generation, enabling stu-
dents to efficiently explore and validate different design decisions
down to the physical layer. Except for FPGA synthesis and (op-
tional) functional verification, SCOoOTER exclusively relies on freely
available, open-source tools to ensure accessibility and avoid cum-
bersome NDAs, high per-seat EDA licensing costs, and the associ-
ated organizational overhead. Our evaluation shows that SCOoOTER
achieves competitive performance to the CVA6 application-class
processor, while also being more accessible to novice users due to
its education-focused documentation and extensive integration and
evaluation tools. Furthermore, SCOoOTER is aligned with widely-
used textbooks on processor design, making it an ideal platform
for students to learn and apply modern processor architecture con-
cepts. Additionally, we highlight the potential for students to en-
hance SCOoOTER by implementing additional functionalities, which
serves as a hands-on introduction to modern processor design and
optimization techniques. Overall, SCOoOTER serves as a powerful
educational platform that enables students to engage deeply with
processor architecture at all abstraction levels and gain experience
relevant to both research and industry practices in processor design.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
WCAE ’25, June 21, 2025, Tokyo, Japan
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM
https://doi.org/XXXXXXX.XXXXXXX

CCS Concepts
•Hardware→ Integrated circuits; •Applied computing→ Ed-
ucation; • Computer systems organization → Architectures.

Keywords
computer architecture, CS education, RISC-V, speculation, out-of-
order

ACM Reference Format:
Markus Scheck, Yannick Lavan, Christoph Spang, and Andreas Koch. 2025.
SCOoOTER: A RISC-V Processor Framework and Tool Flow for an Archit-
ecture-to-Layout Design Course. In Proceedings of Workshop on Computer
Architecture Education (WCAE ’25). ACM, New York, NY, USA, 8 pages.
https://doi.org/XXXXXXX.XXXXXXX

1 Introduction
Many current computer science courses on processor design focus
on simple, in-order architectures, system-on-chip design, and/or uti-
lize processors not intended for educational purposes (cf. Section 3),
resulting in a high barrier of entry for exploration and modification.
Additionally, advanced concepts such as speculation, reordering,
superscalarity, and multi-threading are rarely addressed beyond
basic theoretical explanations. As a result, students may be familiar
with these concepts in theory but often lack the practical knowledge
needed to implement them or assess the trade-offs involved (e.g.,
area requirements or power consumption). Our goal is to bridge
this gap and provide resources that enable students to effectively
engage even with these advanced topics.

The primary outcome of our efforts is the Speculative Config-
urable Out-of-Order Teaching-Enhanced RISC-V Processor (SCOoO-
TER). SCOoOTER is a highly configurable, legible, and extensible
reference implementation. Legibility is achieved using Bluespec
SystemVerilog (BSV), a high-level hardware description language
(cf. Section 4.4). Extensibility is supported through generic inter-
faces, a modular design approach, and the open, extensible RISC-V
instruction set architecture. To facilitate integration with existing
educational materials, the design is closely aligned with Hennessy
and Patterson’s widely used computer architecture textbook [13].

SCOoOTER's wide configurability allows for exploration of hard-
ware trade-offs and performance benefits associated with different
design choices. Since such trade-offs can vary significantly across
platforms, SCOoOTER particularly targets ASIC synthesis. While FP-
GAs allow for rapid prototyping and are easier to deploy, ASICs
provide broader design flexibility and higher performance, making

https://orcid.org/0009-0006-3098-3177
https://orcid.org/0000-0001-5309-4141
https://orcid.org/0000-0003-1606-4474
https://orcid.org/0000-0002-1164-3082
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX


WCAE ’25, June 21, 2025, Tokyo, Japan Markus Scheck, Yannick Lavan, Christoph Spang, and Andreas Koch

them more suitable for in-depth exploration of hardware cost. We
specifically target an open 130nm ASIC process, where actual fab-
rication is easily accessible via ChipCreate [5] or similar low-cost
multi-project wafer services, enabling students to receive actual
physical chips of their designs.

Beyond the processor’s features, usability and debuggability
are central to ensuring a productive learning experience. SCOoO-
TER includes pre-configured simulation targets, support for multiple
test suites and custom binaries, a graphical pipeline viewer, an
extensive tracing infrastructure, and automated implementation
for both ASIC and FPGA designs. Except for FPGA synthesis and
optional random-stimuli functional verification, SCOoOTER relies
exclusively on freely available open-source tools, facilitating easy
distribution of all dependencies, e.g., in the form of pre-configured
virtual machines.
Key features of SCOoOTER include:

• Support for the RV32I[M][A] instruction set
• Broad configurability (e.g., buffer sizes, execution unit mix, ISA
extensions, branch predictors)

• Automated ASIC and FPGA design generation
• Comprehensive debugging, simulation, and testing infrastructure
• Free and open-source availability with detailed documentation

The remainder of this paper is structured as follows: Section 2 out-
lines the student requirements and intended use cases for SCOoOTER.
Section 3 discusses related courses and similar processors, highlight-
ing SCOoOTER’s key benefits. Section 4 presents the architecture of
SCOoOTER, explains our choice of HDL, and describes the implemen-
tation of multithreading, multiprocessor systems, and the provided
peripherals. Section 5 details the educational tools and features
available in SCOoOTER. Section 6 evaluates SCOoOTER in terms of
power, performance, area, and legibility. Section 7 demonstrates
an example usage scenario of SCOoOTER. Section 8 summarizes our
findings, and Section 9 outlines potential future enhancements.

2 Intended Use Cases and Prerequisites
SCOoOTER is designed for two primary use cases: (1) enabling stu-
dents to experiment with various design choices by modifying
the configuration file and evaluating the impact of different set-
tings, and (2) allowing students to inspect and extend the processor
implementation, such as by adding custom branch predictors or
functional units for new instructions. This process is facilitated by
a clear modular structure, comprehensive documentation, and stan-
dardized, generic interfaces. In both cases, SCOoOTER aims to move
students beyond theoretical, pen-and-paper exercises and toward
an intuitive, hands-on understanding of the impact of architectural
decisions and added functionalities.

Before using SCOoOTER, students should acquire a foundational
understanding of the underlying concepts, e.g., through a course
that directly incorporates SCOoOTER, via prerequisite coursework, or
through recommended literature. For background reading, we sug-
gest [13, Ch. 3, Ch. 5, App. C] to introduce pipelining, instruction-
and thread-level parallelism, speculative execution, and superscalar
architectures. Additionally, Bluespec’s resources [6], [18], [2] are
recommended for learning Bluespec SystemVerilog (see Section 4.4),
while also covering basic pipeline architectures and epoch-based
misprediction handling [2], and introducing the RISC-V ISA [18].

3 Related Work
Courses using different RISC-V implementations already exist. We
have identified three categories of such courses and explain how
SCOoOTER will fill a gap in the existing offerings.

(1) The first category uses available complex processors. Harris
et al. [11] introduce a course in which students complete multiple
labs, built around the SweRV EH1 processor. The first part of the
course focuses on processor peripherals and the implementation of
RISC-V programs, while the second part introduces the SweRV EH1
micro-architecture. Although the course excels at teaching system-
on-chip architecture, students may struggle to fully understand or
modify SweRV EH1, as it is highly optimized and implemented in
low-level SystemVerilog.

(2) The second category uses embedded-class pipelined processors.
Ahmadi-Pour et al. [1] introduce the microrv32 processor, imple-
mented in Verilog, and target both FPGA and simulation in their
course.

Lowe et al. [15] present the in-order DINO processor, imple-
mented in Chisel and available in single-cycle and pipelined ver-
sions. Their course consists of four labs in which students: (1) create
an ALU control unit, (2) extend it into a single-cycle processor, (3)
build a pipelined processor, and (4) add branch prediction. For each
lab, students are provided with templates derived from the DINO
processor.

Syafalni et al. [30] present a framework for RISC-V-based learn-
ing on a Xilinx PYNQ FPGA.

While these simple architectures offer a low barrier of entry
and are well-suited for introductory-level teaching, they do not
reflect the complexity of modern high-performance architectures
that would be the subject of an advanced class. Our work aims to
provide follow-up educational resources that address this gap.

(3) The final category has students implement an entire processor
from scratch. Jamieson et al. [14] share their experiences having
students design and implement a RISC-V processor and compose
a system-on-chip similar to a microcontroller, targeting FPGA de-
ployment. They focus on tooling and introduce the architecture of
a microcontroller.

McGrew et al. [16] present an overview of tools for processor
design and implementation, and discuss pedagogical decisions such
as choosing between simulators, FPGAs, or thought experiments,
and selecting an appropriate ISA.

Zekany et al. [34] describe a course in which student groups de-
sign an out-of-order RISC-V processor. The course begins with the
construction of simple combinational circuits, followed by state ma-
chines, and an in-order processor. Students then reuse components
to implement an out-of-order processor. Bonus points are awarded
for advanced features such as superscalar execution, prefetching,
exceptions, or branch prediction. Because full processor design can
be overwhelming for beginners, the course divides the project into
smaller tasks and preliminary exercises.

We acknowledge that implementing an entire processor is both
insightful and engaging, however, it is time-consuming and may
not fit the constraints of all university curricula (e.g., tight credit
point limits on individual courses or the entire study programme).



SCOoOTER: A RISC-V Processor Framework and Tool Flow for an Architecture-to-Layout Design Course WCAE ’25, June 21, 2025, Tokyo, Japan

We see SCOoOTER as a natural extension of the already excellent
resources provided by the prior works.

Additionally, many universities offer excellent courses on FPGA
and ASIC design, which allow students to build efficient hardware
and understand the mapping of HDL code to physical implemen-
tations. The goal of SCOoOTER, however, is somewhat different: we
aim to help students both grasp advanced processor design concepts
specifically and, in turn, to evaluate the trade-offs among different
architectural choices at the physical level. We believe these two
types of courses can complement and enhance each other.

After considering existing courses, we now compare SCOoOTER it-
self to currently available application-class RISC-V processors. The
CVA5 [20] and CVA6 [33] processors provide limited reordering by
allowing out-of-order writeback.1

However, in contrast to SCOoOTER, they still issue instructions
in order and offer only limited configurability, such as limited func-
tional unit mix configurations and limited branch predictor types
and options. Both are implemented in low-level SystemVerilog,
which results in verbose source code and reduced accessibility. On
the other hand, both processors are fully Linux-capable, which is
future work for SCOoOTER.

VexRiscv [29] and NaxRiscv [28], both written in SpinalHDL, a
hardware construction language embedded in Scala, feature ex-
tensive plugin systems. VexRiscv is a configurable-depth pipeline
processor, whereas NaxRiscv employs a dynamic pipeline with
strong reordering capabilities. Their plugin systems enable wide
configurability, but the deep abstraction stack and Scala being a
complex base language risk obscuring the resulting hardware and
introducing a steep learning curve, depending on the nature of the
desired configuration changes. Like CVA5 and CVA6, both proces-
sors can be configured to be fully Linux-capable.

BOOM [35] is a powerful out-of-order processorwritten in Chisel,
which is also embedded in Scala, featuring an advanced memory
subsystem and OS support. Like VexRiscv and NaxRiscv, the deep
abstraction stack and complexity of the chosen HDL risk obscuring
the generated hardware and increasing the learning curve. TOO-
OBA [3], which is implemented in BSV, is a superscalar out-of-order
processor but provides limited configurability, e.g., employing a
fixed execution unit mix.

All of the above processors are tightly coupled with a cache
hierarchy, whereas SCOoOTER directly accesses memory, since our
focus lies on the processor micro-architecture itself, with the uncore
(such as the cache subsystem) being the topic of future work. While
the processors discussed above are already optimized and widely
adopted, we believe SCOoOTER offers superior educational value
through its modularity, configurability, English-language documen-
tation, and supporting tooling.

4 Architecture and Implementation
The architecture of SCOoOTER aligns with Hennessy and Patterson’s
popular textbook on computer architecture [13]. Figure 1 shows the
overall architecture. Each component follows a generic interface
and modular design to enable replacement. SCOoOTER consists of
three main components, which we briefly describe in the following

1As definitions vary, we use the term writeback for result generation and buffering,
and commit for actually writing to the architectural register file.

subsections, focusing on key design choices. For a detailed architec-
tural explanation, we refer to the SCOoOTER documentation. After
introducing the processor’s architecture, we discuss our choice of
HDL and our support for the implementation of multithreading
and multiprocessor systems.

Instruction Memory

Fetch

Decode

Issue

Reservation
Station

CSR ALU Mul/Div Branch Load/Store

Result Bus

Speculative
Registers

Reorder Buffer

Commit Architectural RegistersMispredict/Training Bus

Fr
on

te
nd

Ex
ec

ut
io

n 
C

or
e

Ba
ck
en
d

CSRs Data Memory

enqueue inst.

read registers r/w

distribute instructions

 r/w  r/w

Instruction Buffer

Return
Address

Stack
Branch
Target
Buffer

Direction
Predictor

Branch Prediction

Reservation
Station

Reservation
Station

Reservation
Station

Reservation
Station

Figure 1: Overall architecture of SCOoOTER. The frontend
fetches instructions and calculates the next PC. The execu-
tion core implements Tomasulo’s algorithm. The backend
updates the architectural state. Pipeline stages and buffers
holding instructions are shown in violet, functional units in
green, and elements holding program state in gray.

4.1 Frontend
The frontend is responsible for fetching and decoding instructions,
supplying them to the execution core, and determining the next
PC. The fetch stage retrieves instruction words from memory and
advances the PC. The decode stage expands instructions from their
compact in-memory form to a wider internal format and places
them into an instruction buffer between the frontend and the exe-
cution core. A secondary component is the branch prediction unit,
which assists the fetch stage in selecting the next PC.The branch pre-
dictor speculatively determines the instruction to follow a branch,
avoiding pipeline flush penalties in deep, reordering pipelines (cf.
Figure 5) when the prediction is correct.

Among the many available branch prediction schemes, we im-
plement a return address stack (RAS) for predicting return targets
and a branch target buffer (BTB) for predicting conditional branch
and call targets, as both are widely used [13, p. 497]. Their sizes
are freely configurable, and both can be disabled. The RAS option-
ally supports misprediction recovery, which mitigates corruption
caused by wrong-path instructions that alter the stack before be-
ing detected. To enable this, each instruction may carry metadata



WCAE ’25, June 21, 2025, Tokyo, Japan Markus Scheck, Yannick Lavan, Christoph Spang, and Andreas Koch

such as the stack head pointer or entry, allowing recovery during
misprediction [26]. This improves prediction accuracy at the cost
of increased buffer sizes.

Branch direction (taken or not taken) is most efficiently predicted
by tracking the historical outcome of branching instructions [13,
p. 458ff.]. The smiths predictor uses two-bit saturating counters
to add hysteresis while tracking previous results of the same in-
struction. Gshare adds a branch history register (BHR) to correlate
outcomes with the history of previous dissimilar branches. Gskewed
introduces redundancy using multiple predictor tables and index
functions to reduce interference when two instructions map to
the same entry in the predictor. We select those predictors as they
pedagogically build upon one another, supporting progressive com-
plexity (cf. Figure 2). Additionally, they illustrate core concepts in
branch prediction like basic indexing, history-based correlation,
and interference mitigation. The type of branch direction predic-
tor, number of entries, and BHR size are all configurable. If no
branch predictor is enabled, SCOoOTER predicts branches as not
taken, a behavior the RISC-V C compiler optimizes for by favoring
the fall-through paths [32, Sec. 2.5.2].

Prediction

Program Counter

Majority Vote

Branch History Register

Figure 2: Branch predictors supported by SCOoOTER. Smiths
is shown in black and consists of a table of 2-bit saturating
counters indexed by the LSBs of the PC. Gshare adds a branch
history register and combines it with the PC before accessing
the table (shown in blue). Gskewed adds two counter tables
with differing combination functions for the table index and
a majority vote (shown in green).

4.2 Execution Core
The execution core computes instruction results. It uses the widely
adopted Tomasulo algorithm for register renaming to resolve data
hazards and enable instruction reordering for higher throughput [13,
Sec. 3.5].

Instructions first enter the issue stage, which reserves space in a
reorder buffer (ROB) to preserve program order for commit.

Each instruction is tagged with its ROB slot for identification.
A speculative register file tracks pending writes and speculative
values. The issue stage updates this file with pending write informa-
tion and reads operands, tagging instructions accordingly. Issued
instructions proceed to a reservation station (RS) associated with
their execution unit. These buffers latch operands as they become
available and queue ready instructions for execution. Execution
units compute results and broadcast them via a result bus, which
is received by the ROB, speculative register file, and applicable
reservation stations.

Since speculative instructions must not alter architectural state
until confirmed correct, state-modifying units (e.g., CSR and load/s-
tore) defer execution until the instruction reaches the ROB head.
Because instruction readiness is based on operand availability, later
instructions may execute before earlier ones. SCOoOTER supports
configurable ROB and RS sizes, execution unit mix, and the number
of instructions issued per cycle. The fetch and commit stages scale
accordingly to match increased issue throughput with increased
issues per cycle.

4.3 Backend
The backend includes the commit stage and the architectural reg-
ister file. The commit stage retrieves instructions from the ROB
and checks branch prediction outcomes. It informs the fetch stage
of branch results for updating predictors and initiates redirection
on misprediction. On misprediction, it also flushes the specula-
tive register file, restoring state from the architectural register file.
Correct-path instructions are committed to the architectural regis-
ter file.

4.4 HDL Selection
Since RTL-style HDLs such as Verilog or VHDL, and even modern
hardware construction languages (HCLs) such as Chisel and Spinal-
HDL, often require verbose and difficult-to-follow descriptions that
will likely slow the students’ progress, we opt for a higher-level
HDL. We choose Bluespec SystemVerilog (BSV) [17] for the follow-
ing reasons: (1) BSV is open-source and does not require licenses,
(2) BSV comes with a fast simulator exceeding RTL simulation
throughputs, (3) BSV does not require manual handling of resets,
clock signals or stalls, (4) BSV features strict type safety to detect
common mistakes, (5) BSV provides a comprehensive standard li-
brary, reducing the code’s verbosity, and (6) BSV includes Guarded
Atomic Actions, a powerful concurrency execution model that is far
more expressive than the parametrized structural descriptions tar-
geted by modern HCLs such as Chisel or SpinalHDL. We consider
BSV to strike a good balance between C/C++/SystemC-based high-
level synthesis tools — which often obscure the resulting hardware
— and the verbosity of (System)Verilog.

4.5 Multithreading and Multiprocessor Systems
Hardware multithreading is implemented by modifying the fetch
stage to alternate between the individual hardware threads’ pro-
gram counters. Instructions are tagged with a thread ID, and the
backendmaintains separate architectural register files for each hard-
ware thread (commonly called a hart in the RISC-V community).
CSRs and speculative registers are replicated as well.

As shown in Figure 3, coarser-grained parallelism in the form of
simple multiprocessor systems is supported for SCOoOTER through
a shared arbitration unit that serializes memory access across pro-
cessors. Requests are queued and processed in order. Instruction
arbitration (fetch only) requires read logic (red blocks in Figure 3),
while data arbitration (load/store) supports both read and write
operations. Atomic operations are supported to enable inter-thread
or inter-processor communication. The arbitration unit manages
the link register for RISC-V load-reserved/store-conditional instruc-
tions and ensures that atomic load-modify-store instructions execute



SCOoOTER: A RISC-V Processor Framework and Tool Flow for an Architecture-to-Layout Design Course WCAE ’25, June 21, 2025, Tokyo, Japan

in isolation by stalling further memory operations until they are
complete.

The number of hardware threads and processor cores is con-
figurable. The RISC-V A extension is automatically enabled when
configuring SCOoOTER for multiple threads or processors. Note that
the current SCOoOTER version has been designed with a focus on
teaching the use and implementation of atomic operations, which
often ”fall by the wayside” in many architecture courses. However,
as processor count increases, memory arbitration becomes a bot-
tleneck in the current implementation. To address this, we plan
to introduce a more powerful uncore with a modular, multi-level
cache system in future versions.

FIFO

Read Request
Processor 1

FIFO

Read Request
Processor 2

FIFO

Read Response
Processor 1

FIFO

Read Response
Processor 2

Bus Read

Bus Write

Read Data
DistributionRead LogicQueue

Atomics Logic
stall/override

stall/override

Write Logic Write Completion
Distribution

Atomics Link Register
clear if 
matching

Queue

FIFO FIFO FIFO FIFO

Write Request
Processor 1

Write Request
Processor 2

Write Response
Processor 1

Write Response
Processor 2

Figure 3: Memory arbitration for multiprocessor systems.
Requests are serialized via queues. Red blocks show the read
logic, violet blocks the write logic, and blue blocks the atomic
logic. Atomic read-modify-write accesses are executed read-
ing, modifying and storing the value while stalling all reads
and writes.

4.6 Uncore Peripheral Subsystem
In addition to the processor, SCOoOTER includes peripheral compo-
nents instantiated by IDMemAdapter, our uncore subsystem (see Fig-
ure 4). We provide the standard RISC-V CLINT and PLIC interrupt
controllers. Additional peripherals can be connected via a mini-
mal BSV PutGet interface. The interface can be adapted to AXI4
Full or Lite to connect additional peripheral device IP. For test-
bench environments, IDMemAdapter includes the RVController for
testbench communication from the TaPaSCo-RISC-V [12] software
framework, which forms the base of our simulation environment.
New peripherals can be added by instantiatingmemory connections
and assigning them address spaces. The interconnect automatically
updates to accommodate the new configuration.

5 Educational Features and Tooling
This section introduces some of SCOoOTER’s education-focused tools
and features.

Processor 1

Processor 2

Processor n
Memory

Arbitration
(data)

...

Memory
Arbitration

(instruction)

Instruction
Memory

CLINT

PLIC

RVController

AXI Interface

IDMemAdapter
(Uncore)

Data
Memory

Interrupt Signals

External
Interrupts

Testbench
Communication

External
Devices

Memory Arbiter

CLINT = RISC-V Core-Local Interrupt Controller
PLIC = RISC-V Plattform-Level Interrupt Controller

Figure 4: Uncore subsystem with provided peripheral de-
vices. Instruction fetching paths are shown in blue. Load/s-
tore paths are shown in green. Devices are connected via a
configurable interconnect.

5.1 Automated Testing and Verification
Since we encourage students to modify, explore, and extend the
architecture, wemust also enable them to test whether the processor
still operates correctly. To this end, we provide coarse test suites
for quickly testing for significant mistakes, as well as long-running,
fine-grained testing for more complete verification.

Coarse testing is possible by executing the riscv-tests [24] (for
basic instructions), riscv-arch-tests [23] (for exceptions), and cus-
tom parallel reduction tests (for atomic instructions). Higher test
coverage is enabled by running the Embench-IoT [10] benchmarks
and by executing randomly generated tests and comparing the exe-
cution traces to an instruction set simulator (ISS). Test generation
and comparison to an ISS is supported by Core-V-Verif [19]. Note
that Core-V-Verif requires a commercial UVM-capable simulator,
since, to the best of our knowledge, no open alternative is available
yet. Each suite can be executed as a make target and requires no
additional setup. We also provide a GitLab CI file and an associated
Docker container to run these tests automatically, such that stu-
dents can identify mistakes in their commits quickly, and educators
are able to get a quick overview of the functionality of all students’
results.

5.2 Debug Tooling
During the implementation of their modifications, students may
frequently encounter issues, such as failing tests, that need to be
debugged. While logic waveform dumping allows for detailed ex-
ploration of the simulated design, it is neither fast nor user-friendly.
Therefore, we have implemented additional tools for quick and
efficient debugging. SCOoOTER generates log files in the Kanata
format. Using the Konata [25] tool, students can visually track the
pipeline progress and identify stuck instructions or hazards. Figure
5 shows a sample Konata diagram. Additionally, SCOoOTER has an
extensive logging-based debugging infrastructure. Debug outputs
can be enabled per component in a global configuration file. This
allows students to trace updates of specific units and explore their
issues. Lastly, SCOoOTER implements the industry-standard RVFI
[31] interface as a tracing interface for committed instructions. This
interface can be used by additional hardware units monitoring
the processor’s execution trace or during waveform debugging to
understand which instructions are executed.



WCAE ’25, June 21, 2025, Tokyo, Japan Markus Scheck, Yannick Lavan, Christoph Spang, and Andreas Koch

Figure 5: Konata tracing of pipeline execution for SCOoOTER
(65X configuration, cf. section 6) running the XOR RISC-V
ISA test. Different colors correspond to different pipeline
stages during instruction execution. Gray instructions are
flushed following mispredictions, highlighting the benefit
of good branch prediction to increase throughput.

5.3 Performance Evaluation Tooling
After creating and validating their modifications, students will typi-
cally need to gather performance data. SCOoOTER simplifies this by
integrating Embench-IoT [10], a widely used benchmark suite. Our
simulation framework reports elapsed cycles per test and prints
the number of correctly / incorrectly predicted branches. Faster
evaluations for longer workloads are supported using FPGA hard-
ware. Both mapping to the FPGA as well as interacting with the
hardware are automated using the TaPaSCo [9] hardware/software
framework. Since the software simulation environment is compati-
ble with the TaPaSCo-RISC-V [12] FPGA hardware implementation,
no changes to the test binaries are necessary.

5.4 Automated Design Generation
In addition to cycle-based performance measurements, the maxi-
mum frequency and required hardware area need to be considered
to gauge whether a micro-architectural design decision is actu-
ally beneficial. Using FPGA and ASIC tools can be challenging
without significant user experience. Hence, we automate the de-
sign generation process as much as possible. FPGA designs are
automatically created using TaPaSCo-RISC-V [12]. Note that, since
TaPaSCo targets AMD/Xilinx FPGAs, the proprietary Vivado tool
suite must be installed when using this feature. ASIC designs are
generated using the open OpenLane [22] flow. By default, we use
Efabless-provided EF_SRAM [8] memory macros for instruction and
data memory. Integration of other memory macros, such as those
created by OpenRAM [21] and DFFRAM [7], is possible via our
included SRAM abstraction layer BlueSRAM. The ASIC design is
generated by our flow as a turnkey macro, which can be placed into
the Caravel [4] SoC wrapper, which provides I/O pads, clocking,
reset, and on-chip debugging infrastructure.

5.5 Resources for Students
Processor features and tooling capabilities are useless if students
are unable to discover them. Hence, we provide extensive docu-
mentation. Building on the prerequisites discussed in Section 2, the
documentation introduces all of SCOoOTER's features, configura-
tion options, and the implementation and simulation environments.
It also explains the architecture and the structure of the code base,
which itself is thoroughly commented.

6 Evaluation
We evaluate the performance and usability of SCOoOTER under dif-
ferent configurations, comparing it to CVA6. We chose CVA6 be-
cause it can be configured to have feature parity with SCOoOTER and
has a similar pipeline design, differing solely in maintaining in-
struction order while reading operands. Specifically, we utilize the
CV32A60X and CV32A65X configurations of CVA6, while disabling
all features not supported by SCOoOTER (i.e., the cache, memory
management, and extensions outside of RV32IMA_zicsr). The main
difference between those configurations is the number of ROB en-
tries, where CV32A65X has eight slots while CV32A60X only has
four. The equivalent SCOoOTER configurations are referred to as
60X and 65X. We evaluate the maximum frequency, required area,
wall-clock performance, and legibility as reported by students. Note
that SCOoOTER is capable of scaling to significantly larger config-
urations. The largest configuration successfully implemented on
Caravel features dual-issue execution, 32 ROB entries, and eight-slot
reservation stations.

6.1 Area and Frequency
Since we exclusively use open-source tooling and an open ASIC
process, we can fully report technology-specific results. We target
the SkyWater 130A process [27] using the OpenLane [22] implemen-
tation suite with the default configuration provided with SCOoOTER.
The generated designs contain only the processor cores with no
memory, caches, or peripheral components, ensuring a fair com-
parison. The results are shown in Table 1.

Configuration Area (um²) fmax (MHz)
CVA6 (CV32A60X) 887526 56
SCOoOTER (60X) 1322280 83
CVA6 (CV32A65X) 946298 53
SCOoOTER (65X) 1432540 77

Table 1: ASIC data on SKY130 for CVA6 and SCOoOTER

SCOoOTER requires about 1.5 times more area than CVA6. This
is likely due to SCOoOTER's larger execution core, which includes
added reservation stations and speculative registers. On the other
hand, SCOoOTER achieves a higher clock frequency, likely due to
optimizations for the SkyWater 130A process. Both processors show
similar scaling of area with different configurations.

Although the achieved maximum clock frequencies are not ex-
ceptional, this is primarily due to the legacy 130nm process and the
comparatively lower quality of results produced by open-source
EDA tools relative to mature commercial alternatives. Despite these
limitations, we consider the SkyWater 130A process as optimal for
classroom use, as it is widely supported by open-source tools and
provides adequate frequency and area scaling to demonstrate the
effect of different design choices.

We advocate for the use of open alternatives in educational
settings because, depending on class size, it may be infeasible for
all students to sign NDAs or have access to commercial EDA tool
licenses. Furthermore, OpenLane is more accessible for novice users
than the very complex industrial-strength tools, due to its simple
unified configuration file and easy-to-use launch commands.



SCOoOTER: A RISC-V Processor Framework and Tool Flow for an Architecture-to-Layout Design Course WCAE ’25, June 21, 2025, Tokyo, Japan

6.2 Performance
Figure 6 presents the wall-clock time for SCOoOTER and CVA6 exe-
cuting the Embench-IoT benchmarks in simulation [10]. For CVA6,
we include results both with and without its cache to assess the
cache’s performance impact, assuming a similar clock frequency
in both cases. SCOoOTER consistently outperforms the cacheless
CVA6 configurations. As expected, 65X is faster than 60X, while
CV32A65X and CV32A60X show the opposite trend. This inversion
likely stems from CVA6’s more efficient load/store implementation,
which reduces stalls and diminishes the performance gains from
increased instruction-level parallelism. Consequently, the higher
clock rate of CV32A60X predominantly impacts the results. Overall,
while SCOoOTER already has competitive performance, the planned
enhancements to its memory subsystem, such as a more advanced
load/store unit or added caches, will further improve efficiency.

6.3 Accessibility by Students
SCOoOTER has been successfully used in three student theses, with
students reporting only few hurdles when they worked with the
code. The thesis topics were:
• Building a cache for SCOoOTER in BSV
• Extending the cache with TileLink coherency
• Adding NoMMU Linux support to SCOoOTER

While students had no issues modifying and extending the pro-
cessor, the theses yielded just proof-of-concept implementations
that require further work before being suitable for wider classroom
use. For example, the cache currently only supports FPGA targets
and operates at a low frequency, while the Linux port needs further
automation and currently lacks a full root filesystem.

7 Sample Learning Scenario
We demonstrate SCOoOTERs utility by describing a typical evalu-
ation task to be performed by students: comparing the efficiency
of the four provided branch direction predictors. We select this
example because branch prediction is crucial for the performance
of deeply-pipelined reordering processors, helping to avoid the
high cost of pipeline flushes (Figure 5 shows an example of the
pipeline flushing penalty). Furthermore, we believe it serves as
a good introductory exercise. Varying the branch predictor type
can be achieved by changing just a single line of SCOoOTER's con-
figuration. Instead of crafting their own simulation environment
and integrating it with a benchmark, students can use SCOoOTER's
built-in simulation environment with Embench-IoT as workload.
Launching the entire test suite is simplified to a single make com-
mand. The simulation will then provide students with the number
of correctly and incorrectly predicted branches.

While cycle-by-cycle performance plays a significant role, max-
imum frequency and area requirements must also be considered
when evaluating an implementation. SCOoOTER addresses this by
providing built-in synthesis targets. Instead of setting up a complex
ASIC implementation flow from scratch, students can simply invoke
a Python script, just needing to specify the target frequency and
placement density. OpenLane is then called to automatically syn-
thesize the design and will notify the student if the desired timing
closure cannot be achieved. Alternatively, students can use another
script to evaluate the design in hardware on an FPGA. In that case,

students can load the bitstream onto an FPGA board for faster
benchmarking. Since our flow relies on TaPaSCo for the actual
FPGA implementation, a wide range of AMD/Xilinx boards, rang-
ing from cheap Zynq-class prototyping boards to large UltraScale+
and Versal PCIe accelerators, are supported.

As a next exercise, students could enhance SCOoOTER's branch
prediction capabilities by implementing additional branch direction
predictors. This is straightforward, thanks to SCOoOTER's generic
interfaces and modular architecture. The branch predictor interface
provides all relevant information about branch outcomes from the
commit stage, including the program counter (PC), predicted and
actual direction, actual target, optional history information, thread
ID, and instruction type. For the actual prediction, the instruction
PC, thread ID, and branch type are passed to the predictor module,
while the fetch stage expects a prediction and optional history
information from the predictor, which will be returned along with
the training data. We believe that this simple-yet-flexible interface
allows students to implement most direction predictors easily. To
add a new predictor, students simply need to implement a module
with the correct interface, and add it to the list of available direction
predictor implementations.

8 Conclusion
This paper presented SCOoOTER, a highly configurable RISC-V pro-
cessor designed for use in mid-to-advanced level computer archi-
tecture classes. We demonstrated how SCOoOTER enables students
to explore, modify, and extend its architecture, using our provided
tools for testing, debugging, performance evaluation, and design
generation down to layout. Our evaluation showed that SCOoOTER
offers competitive performance even when compared to established
processors like CVA6, while remaining accessible to novice users
through its user-friendly interfaces, documentation, and integra-
tion with open-source tools. Through this accessibility SCOoOTER
allows students to apply their theoretical knowledge in a hands-on
manner. By utilizing open-source technologies such as OpenLane,
we make full-stack processor design and evaluation more accessible
in educational settings, helping to prepare students for advanced
research and industry practice.

9 Future Work
One key area for future improvement is the load/store unit and
memory architecture. We plan to implement more advanced mem-
ory systems, such as cache hierarchies and enhanced memory ac-
cess controls, to boost performance, particularly for larger proces-
sor counts. This will also enhance SCOoOTER's educational value
on the topic of memory subsystems. Additionally, we aim to ex-
tend SCOoOTER to support operating systems, such as Linux, by im-
proving its memory management. This expansion will broaden the
scope of SCOoOTER further, enabling more comprehensive system-
level design exercises. Furthermore, SCOoOTER's scope could be
expanded by adding implementations for simpler, non-reordering
pipelines.This would allow SCOoOTER's support tools to be used for
an even wider range of processor designs, from small multi-cycle or
pipelined architectures to modern out-of-order superscalar cores.
Lastly, we are in the process of developing a full course on advanced
processor design and implementation, with SCOoOTER being the



WCAE ’25, June 21, 2025, Tokyo, Japan Markus Scheck, Yannick Lavan, Christoph Spang, and Andreas Koch

stat
ema

te

aha
-mo

nt6
4

cub
ic edn

huff
ben

ch

mat
mu

lt-in
t
min

ver nbo
dy

nett
le-a

es

nett
le-s

ha2
56
nsic

hne
u
pico

jpeg
qrd

uin
o

sgli
b-co

mbi
ned slre st ud

wik
isor

t
0

1

2

re
la
tiv

e
ex
ec
ut
io
n

w
al
l-c

lo
ck

tim
e

CV32A60X CV32A60X (no cache) SCOoOTER (60X) CV32A65X (no cache) SCOoOTER (65X)

Figure 6: Relative benchmark execution wall-clock time compared to CV32A65X (with cache) (lower is better)

entry point to more complex micro-architectures. This course will
offer students a hands-on introduction to processor features such
as speculative execution, branch prediction, instruction reordering,
and the associated design choices; followed by considering the effects
of these choices when the processor is actually implemented as an
ASIC.

10 Availability
SCOoOTER, along with its documentation, is available on GitHub:
https://github.com/esa-tu-darmstadt/SCOoOTER

Acknowledgments
This work has been supported by the German Federal Ministry of
Education and Research in the project Scale4Edge (grant: 16ME0139)
as well as the Hessian Ministry of Higher Education, Research,
Science and the Arts (grant: 01IS23067) within their joint support of
the National Research Center for Applied Cybersecurity ATHENE.

References
[1] Sallar Ahmadi-Pour, Vladimir Herdt, and Rolf Drechsler. 2021. MircoRV32: an

open source RISC-V cross-level platform for education and research. In Proceed-
ings of the Workshop on Design Automation for CPS and IoT. 30–35.

[2] Arvind, Rishiyur S. Nikhil, Joel S. Emer, and Murali Vijayaraghavan. 2011. Com-
puter architecture: A Constructive Approach. Elsevier.

[3] Bluespec. 2024. TOOOBA. https://github.com/bluespec/Toooba. Accessed:
2025-03-26.

[4] ChipFoundry.io. 2025. Caravel. https://github.com/chipfoundry/caravel. Ac-
cessed: 2025-03-28.

[5] ChipFoundry.io. 2025. ChipCreate. https://chipfoundry.io/. Accessed: 2025-05-07.
[6] Kathy R. Czeck and Rishiyur S. Nikhil. 2010. BSV by Example. Createspace

Independent Publishing Platform. http://csg.csail.mit.edu/6.S078/6_S078_2012_
www/resources/bsv_by_example.pdf

[7] DFFRAM Contributors. 2025. DFFRAM. https://github.com/AUCOHL/DFFRAM.
Accessed: 2025-03-28.

[8] Efabless. 2025. EF_SRAM. https://github.com/efabless/EF_SRAM_1024x32. Ac-
cessed: 2025-03-28.

[9] Embedded Systems and Applications Group TU Darmstadt. 2025. TaPaSCo.
https://github.com/esa-tu-darmstadt/tapasco. Accessed: 2025-03-26.

[10] Embench contributors. 2023. Embench™: Open Benchmarks for Embedded
Platforms. https://github.com/embench/embench-iot. Accessed: 2025-05-15.

[11] Sarah L Harris, Daniel Chaver, Luis Piñuel, JI Gomez-Perez, M Hamza Liaqat,
Zubair L Kakakhel, Olof Kindgren, and Robert Owen. 2021. RVfpga: Using a
RISC-V Core Targeted to an FPGA in Computer Architecture Education. In 2021
31st International Conference on Field-Programmable Logic and Applications (FPL).
IEEE, 145–150.

[12] Carsten Heinz, Yannick Lavan, Jaco Hofmann, and Andreas Koch. 2019. A catalog
and in-hardware evaluation of open-source drop-in compatible RISC-V softcore
processors. In 2019 International Conference on ReConFigurable Computing and
FPGAs (ReConFig). IEEE, 1–8.

[13] John L. Hennessy and David A. Patterson. 2019. Computer Architecture: A Quan-
titative Approach (6th ed.). Elsevier.

[14] Peter Jamieson, Huan Le, Nathan Martin, Tyler McGrew, Yicheng Qian, Eric
Schonauer, Alan Ehret, and Michel A Kinsy. 2022. Computer Engineering Educa-
tion Experiences with RISC-V Architectures—From Computer Architecture to
Microcontrollers. Journal of Low Power Electronics and Applications 12, 3 (2022),
45.

[15] Jason Lowe-Power and Christopher Nitta. 2019. The Davis In-Order (DINO)
CPU: A Teaching-Focused RISC-V CPU Design. In Proceedings of the Workshop
on Computer Architecture Education. 1–8.

[16] Tyler McGrew, Eric Schonauer, and Peter Jamieson. 2019. Framework and tools
for undergraduates designing RISC-V processors on an FPGA in computer archi-
tecture education. In 2019 International Conference on Computational Science and
Computational Intelligence (CSCI). IEEE, 778–781.

[17] Rishiyur Nikhil. 2004. Bluespec System Verilog: efficient, correct RTL from high
level specifications. In Proceedings. Second ACM and IEEE International Conference
on Formal Methods and Models for Co-Design, 2004. MEMOCODE’04. IEEE, 69–70.

[18] Rishiyur S. Nikhil. 2024. Learn RISC-V CPU Implementation and BSV. Bluespec
Inc. https://github.com/rsnikhil/Learn_Bluespec_and_RISCV_Design/blob/main/
Book_BLang_RISCV.pdf Accessed: 2025-03-28.

[19] OpenHW Group. 2025. Core-V-Verif. https://github.com/openhwgroup/core-v-
verif. Accessed: 2025-04-07.

[20] OpenHW Group. 2025. CVA5. https://github.com/openhwgroup/cva5. Accessed:
2025-04-22.

[21] OpenRAM Contributors. 2025. OpenRAM. https://openram.org. Accessed:
2025-03-28.

[22] OpenROAD contributors. 2025. OpenLane. https://github.com/The-OpenROAD-
Project/OpenLane. Accessed: 2025-04-07.

[23] RISC-V Software contributors. 2025. RISC-V Architecture Test SIG. https://github.
com/riscv-non-isa/riscv-arch-test. Accessed: 2025-05-15.

[24] RISC-V Software contributors. 2025. riscv-tests. https://github.com/riscv-
software-src/riscv-tests. Accessed: 2025-04-07.

[25] Ryota Shioya. 2023. Konata. https://github.com/shioyadan/Konata. Accessed:
2025-03-26.

[26] Kevin Skadron, Pritpal S Ahuja, Margaret Martonosi, and Douglas W Clark. 1998.
Improving prediction for procedure returns with return-address-stack repair
mechanisms. In Proceedings. 31st Annual ACM/IEEE International Symposium on
Microarchitecture. IEEE, 259–271.

[27] SkyWater PDK Authors. 2020. SkyWater SKY130 PDK. https://skywater-pdk.
readthedocs.io/en/main. Accessed: 2025-03-28.

[28] SpinalHDL. 2025. NaxRiscv. https://github.com/SpinalHDL/NaxRiscv. Accessed:
2025-03-26.

[29] SpinalHDL. 2025. VexRiscv. https://github.com/SpinalHDL/VexRiscv. Accessed:
2025-03-26.

[30] Infall Syafalni, Yahwista Salomo, Chyndi Oktavia Devi, Muhammad Ali Novand-
hika, Nana Sutisna, Rahmat Mulyawan, and Trio Adiono. 2022. RISC-V Learning
Framework using PYNQ FPGA. In 2022 8th International Conference on Wireless
and Telematics (ICWT). IEEE, 1–8.

[31] SymbioticEDA. 2021. RISC-V Formal Verification Framework. https://github.
com/SymbioticEDA/riscv-formal. Accessed: 2025-04-07.

[32] Andrew Waterman and Krste Asanović. 2019. The RISC-V Instruction Set Ar-
chitecture. Vol. I: Unprivileged ISA. SiFive Inc. and University of California,
Berkeley.

[33] Florian Zaruba and Luca Benini. 2019. The Cost of Application-Class Processing:
Energy and Performance Analysis of a Linux-Ready 1.7-GHz 64-Bit RISC-V Core in
22-nm FDSOI Technology. https://doi.org/10.1109/TVLSI.2019.2926114

[34] Stephen A Zekany, Jielun Tan, and James A Connolly. 2021. Teaching Out-of-
Order Processor Design with the RISC-V ISA. In 2021 ACM/IEEE Workshop on
Computer Architecture Education (WCAE). IEEE, 1–8.

[35] Jerry Zhao, Ben Korpan, Abraham Gonzalez, and Krste Asanovic. 2020. Sonic-
BOOM: The 3rd Generation Berkeley Out-of-Order Machine. (May 2020).

https://github.com/esa-tu-darmstadt/SCOoOTER
https://github.com/bluespec/Toooba
https://github.com/chipfoundry/caravel
https://chipfoundry.io/
http://csg.csail.mit.edu/6.S078/6_S078_2012_www/resources/bsv_by_example.pdf
http://csg.csail.mit.edu/6.S078/6_S078_2012_www/resources/bsv_by_example.pdf
https://github.com/AUCOHL/DFFRAM
https://github.com/efabless/EF_SRAM_1024x32
https://github.com/esa-tu-darmstadt/tapasco
https://github.com/embench/embench-iot
https://github.com/rsnikhil/Learn_Bluespec_and_RISCV_Design/blob/main/Book_BLang_RISCV.pdf
https://github.com/rsnikhil/Learn_Bluespec_and_RISCV_Design/blob/main/Book_BLang_RISCV.pdf
https://github.com/openhwgroup/core-v-verif
https://github.com/openhwgroup/core-v-verif
https://github.com/openhwgroup/cva5
https://openram.org
https://github.com/The-OpenROAD-Project/OpenLane
https://github.com/The-OpenROAD-Project/OpenLane
https://github.com/riscv-non-isa/riscv-arch-test
https://github.com/riscv-non-isa/riscv-arch-test
https://github.com/riscv-software-src/riscv-tests
https://github.com/riscv-software-src/riscv-tests
https://github.com/shioyadan/Konata
https://skywater-pdk.readthedocs.io/en/main
https://skywater-pdk.readthedocs.io/en/main
https://github.com/SpinalHDL/NaxRiscv
https://github.com/SpinalHDL/VexRiscv
https://github.com/SymbioticEDA/riscv-formal
https://github.com/SymbioticEDA/riscv-formal
https://doi.org/10.1109/TVLSI.2019.2926114

	Abstract
	1 Introduction
	2 Intended Use Cases and Prerequisites
	3 Related Work
	4 Architecture and Implementation
	4.1 Frontend
	4.2 Execution Core
	4.3 Backend
	4.4 HDL Selection
	4.5 Multithreading and Multiprocessor Systems
	4.6 Uncore Peripheral Subsystem

	5 Educational Features and Tooling
	5.1 Automated Testing and Verification
	5.2 Debug Tooling
	5.3 Performance Evaluation Tooling
	5.4 Automated Design Generation
	5.5 Resources for Students

	6 Evaluation
	6.1 Area and Frequency
	6.2 Performance
	6.3 Accessibility by Students

	7 Sample Learning Scenario
	8 Conclusion
	9 Future Work
	10 Availability
	Acknowledgments
	References

