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 1  COMPUTE_GRAPH constexpr auto the_graph = make_compute_graph_v<[] (
 2      IoConnector<float> in1, IoConnector<float> in2
 3  ) {
 4      IoConnector<float> squared, out;
 5  
 6      squaring_kernel(in1, squared);
 7      adder_kernel(squared, in2, out);
 8  
 9      return std::make_tuple(squared, out);
10  }>;
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Background

● Specialized accelerators are becoming more 
prevalent in HPC
– GPUs, FPGAs, dataflow architectures, …

● Example: AMD Versal AI Engines
– 2D Grid of VLIW processors
– Data streaming connections
– Integration with Versal FPGAs

● Programming usually requires vendor-
specific toolchains

🗲

🗲

🗲

🗲

🗲

Packet router

Processor tile
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Challenge

Host CPU
program

PE

PE

PE

● Host and accelerator codebases are separate
– For AIEs, every compute kernel is a separate program

● High barrier to entry
– Existing applications must be split up

– Different toolchains and debuggers for each part
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Contribution

PE

PE

PE

Embedded
graph prototype

Host CPU
program

Auto-extract, deploy on HW

● Let users prototype graphs within an existing application

● Extract graphs from application source code programmatically
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Previous Work: „Graphtoy“

● Compute graph simulator based on C++20 coroutines¹
– For simulating AI Engine dataflow graphs (and other architectures)

Can be integrated into existing 
applications

• Rapid prototyping of graphs

• No early codebase split 
needed

Graphs must be translated to 
target architecture manually

• Code split still necessary, just 
delayed

+ –

¹J. Strobl, L. Solis-Vasquez, Y. Lavan, and A. Koch. “Graphtoy: Fast Software Simulation of Applications for AMD’s AI Engines”, ARC 2024
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High-Level Approach

● Rework Graphtoy constructs to bring them closer to AIE syntax

● Use source-to-source translation to generate AIE code
– Utilize constexpr code execution to off-load graph

construction / analysis to the compiler

● Requires rewrite of most parts of Graphtoy
– Now called cgsim (Compute Graph Simulator)
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Compile-time Code Execution in C++

1  constexpr auto compile_time_fibonacci = [] {
2      std::array<int, 20> result = {1, 1};
3  
4      for (int i = 2; i < result.size(); ++i) {
5          result[i] = result[i - 1] + result[i - 2];
6      }
7  
8      return result;
9  }();

● C++ code is usually compiled to machine code
– Executes at runtime

● Since C++11, code can be run at compile time (constexpr)
– Results can influence the compilation of other code
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Compile-time Code Execution in C++

1  constexpr auto bad_code = [] {
2      int *result = new int[20];
3  
4      /* compute fibonacci numbers */
5  
6      return result; // Compile error!
7  }();

● Only a subset of C++ constructs can be executed at compile time

● Dynamic memory allocations are limited
– Memory can be allocated at compile time

– But only if it is also deallocated at compile time

– Compile-time allocations cannot escape compile-time execution
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Compute Kernels in cgsim

 1  COMPUTE_KERNEL(aie, adder_kernel,
 2                 KernelReadPort<float> in1, KernelReadPort<float> in2,
 3                 KernelWritePort<float> out)
 4  {
 5      while (true) {
 6          const float val = (co_await in1.get()) + (co_await in2.get());
 7          co_await out.put(val);
 8      }
 9  }
10  
11  COMPUTE_KERNEL(aie, squaring_kernel,
12                 KernelReadPort<float> in,
13                 KernelWritePort<float> out)
14  {
15      while (true) {
16          const float val = co_await in.get();
17          co_await out.put(val * val);
18      }
19  }
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Compute Graphs in cgsim

 1  COMPUTE_GRAPH constexpr auto the_graph = make_compute_graph_v<[] (
 2      IoConnector<float> in1, IoConnector<float> in2
 3  ) {
 4      IoConnector<float> squared, out;
 5  
 6      squaring_kernel(in1, squared);
 7      adder_kernel(squared, in2, out);
 8  
 9      return std::make_tuple(squared, out);
10  }>;

x² +
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Graph Serialization

● Parsing arbitrary user-provided code is hard

● Compile-time code execution can make parsing easier
– Instantiate the compute graph at compile time

– Gather information with traits / template metaprogramming

– Serialize the graph into a constexpr variable

● Result: Problem reduced to parsing a flat data structure
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Graph Ingestion

1. Read source files, build Clang AST

2. Scan for compute graphs (marked by attribute)

3. Evaluate each graph expression
– Clang runs the user-provided constexpr code

– Returns serialized form of the graph

4. Deserialize (unflatten) the graph
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Graph Source Generation

● Partition the graph into multiple 
kernel realms
– AIE, HLS, CPU, …

● Emit graph definition source file(s) 
for each realm
– Realm-specific source generators

● AIE generator:
– Kernel declarations & instantiations
– Graph connectivity

Graph def.
for HW A

Graph def.
for HW B

Realm A

Realm B
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Kernel Function Extraction

● Determine source range of each 
used kernel

● Transform each kernel in a realm-
specific way

● Copy referenced source snippets 
into the kernel source file
– Functions, variables, types, include 

directives, ...

 1  static float sum_squared(
 2    std::span<const float> data
 3  ) {
 4    float sum = 0;
 5    for (auto f: data)
 6      sum += f * f;
 7    return sum;
 8  }
 9  
10  COMPUTE_KERNEL(aie, ...) {
11    // ...
12  
13    float signal_energy =
14      sum_squared(samples);
15  
16    // ...
17  }
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 1  COMPUTE_KERNEL(aie, adder_kernel,
 2                 KernelReadPort<float> in1, KernelReadPort<float> in2,
 3                 KernelWritePort<float> out)
 4  {
 5      while (true) {
 6          const float val = (co_await in1.get()) + (co_await in2.get());
 7          co_await out.put(val);
 8      }
 9  }

AIE Source Transformation

● Remove all co_await tokens (used in cgsim port I/O)
– Asynchronous calls → synchronous calls

● Generate kernel entry thunk function
– Wrapper classes translating generic get()/put() to AIE-specific calls

Generated AIE kernel

Autogenerated
thunk function:

Convert arguments

Real kernel
main function

AIE framework

AIE tile boot function

 1  void adder_kernel_thunk(
 2      adf::input_async_buffer<...>  xlat_kparam_0,
 3      adf::input_async_buffer<...>  xlat_kparam_1,
 4      adf::output_async_buffer<...> xlat_kparam_2
 5  ) {
 6      adder_kernel_impl(
 7          KernelReadPort<...> (xlat_kparam_0),
 8          KernelReadPort<...> (xlat_kparam_1),
 9          KernelWritePort<...>(xlat_kparam_2)
10      );
11  }
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AIE API & Intrinsics in cgsim

● AIE intrinsics and API calls required to fully leverage AIEs
● AMD provides an x86 implementation of AIE intrinsics

– Required for x86sim simulator
– C++ headers and static libraries

● cgsim can use these headers too
– Enables writing AIE SIMD code in cgsim
– Syntax and semantics identical to Vitis
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Evaluation Strategy: AIE → cgsim → AIE

1. Port example AIE applications (from AMD) to cgsim
– Small performance-focused demos

– Hand-optimized AIE code

2. Then extract the graphs again
– Turns cgsim code back into AIE code

3. Profile the graphs in the AIE simulator
– Throughput and latency

– Simulator performance
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Evaluation Strategy: Selection of Examples

● Examples selected to stress different aspects of cgsim

● Bitonic sort
– Relies heavily on AIE intrinsics

● Farrow filter
– Two-kernel graph, optimized for throughput

– Gets close to theoretical performance limits of AIE tiles

– Stresses kernel-to-kernel communication

● Others: IIR filter (throughput), Bilinear Interpolation (intrinsics)
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Results: Graph Correctness (cgsim → AIE)

● Auto-extracted graphs compile with AMD toolchain

● Ported graphs produce correct outputs
– Bit-for-bit identical in cgsim and AMD’s simulators

– Validated with test vector files
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Results: Graph Performance (cgsim → AIE)¹

Graph Input block size
AMD

(ns / block)
This work

(ns / block)
Relative 

performance

Bitonic 16 floats 3557 4169 85.32 %

Farrow 1024 samples 913 1019 89.58 %

IIR 2048 samples 5410 5385 100.46 %

Bilinear 256 pixels 484 567 85.33 %

¹Determined via cycle-approximate AIE architecture simulator (aiesim)
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Results: Graph Performance (cgsim → AIE)

● cgsim generated kernels achieve 85 – 100 % of original 
performance

● Performance differences due to code changes
– Wrapper for AIE to cgsim type conversion

– Impact on VLIW instruction scheduling
● Insertion of NOPs during kernel initialization

– Amortizing for larger block sizes

– In IIR case cgsim achieves slight performance improvement

● Hand-optimization through cgsim possible
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Results: Simulator Performance

Graph Repetitions
cgsim

(seconds)
AMD x86sim

(seconds)
AMD aiesim

(seconds)

Bitonic 1024 14.3 22.9 5826

Farrow 512 22.3 20.7 4287

IIR 256 18.2 21.4 4346

Bilinear 1 15.0 15.6 3536
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Results: Simulator Performance

● cgsim has very little overhead
– Simulation runtime dominated by AIE intrinsics

– < 0.1% of time spent in cgsim library

– Fast despite being single-threaded

● AMD x86sim is slightly faster in 1 of 4 cases (Farrow)
– Multiple compute heavy-kernels

– Leverages multi-threading

– Suffers from high synchronization overhead
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Conclusion

● In-application graph simulation and code extraction framework 
targeting AMD Versal AIEs cgsim

● Hybrid source-to-source translator approach
– Compile-time preprocessing of C++ AST

– Lowers complexity of AST introspection

● Comparable graph performance to hand-optimized kernels
– Optimizations can be applied through cgsim

● Foundation for multi-target code generation already built



Nov 21, 2025  |  Technical University of Darmstadt  |  H2RC  |  Versal AIE graph framework  |  33

Future Work

● Only AIE code-generation backend implemented
– We are currently adding support for HLS kernels

● No support for templated kernels yet
– Requires complex template metaprogramming / type traits

– Work in progress
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Thank you for your attention!

● Any questions? Contact us: jonathan.strobl@gmx.de

● We release cgsim as open-source software at:

https://github.com/esa-tu-darmstadt/cgsim
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