
Nov 21, 2025 | Technical University of Darmstadt | H2RC | Versal AIE graph framework | 1

A Compute Graph Simulation and Implementation
Framework Targeting Versal AI Engines

Jonathan Strobl, Leonardo Solis-Vasquez, Yannick Lavan, Andreas Koch
Presenter: Torben Kalkhof

Embedded Systems and Applications Group
Technical University of Darmstadt, Germany

 1 COMPUTE_GRAPH constexpr auto the_graph = make_compute_graph_v<[] (
 2 IoConnector<float> in1, IoConnector<float> in2
 3) {
 4 IoConnector<float> squared, out;
 5
 6 squaring_kernel(in1, squared);
 7 adder_kernel(squared, in2, out);
 8
 9 return std::make_tuple(squared, out);
10 }>;

Nov 21, 2025 | Technical University of Darmstadt | H2RC | Versal AIE graph framework | 2

Background

● Specialized accelerators are becoming more
prevalent in HPC
– GPUs, FPGAs, dataflow architectures, …

● Example: AMD Versal AI Engines
– 2D Grid of VLIW processors
– Data streaming connections
– Integration with Versal FPGAs

● Programming usually requires vendor-
specific toolchains

🗲

🗲

🗲

🗲

🗲

Packet router

Processor tile

Nov 21, 2025 | Technical University of Darmstadt | H2RC | Versal AIE graph framework | 3

Challenge

Host CPU
program

PE

PE

PE

● Host and accelerator codebases are separate
– For AIEs, every compute kernel is a separate program

● High barrier to entry
– Existing applications must be split up

– Different toolchains and debuggers for each part

Nov 21, 2025 | Technical University of Darmstadt | H2RC | Versal AIE graph framework | 4

Contribution

PE

PE

PE

Embedded
graph prototype

Host CPU
program

Auto-extract, deploy on HW

● Let users prototype graphs within an existing application

● Extract graphs from application source code programmatically

Nov 21, 2025 | Technical University of Darmstadt | H2RC | Versal AIE graph framework | 5

Previous Work: „Graphtoy“

● Compute graph simulator based on C++20 coroutines¹
– For simulating AI Engine dataflow graphs (and other architectures)

Can be integrated into existing
applications

• Rapid prototyping of graphs

• No early codebase split
needed

Graphs must be translated to
target architecture manually

• Code split still necessary, just
delayed

+ –

¹J. Strobl, L. Solis-Vasquez, Y. Lavan, and A. Koch. “Graphtoy: Fast Software Simulation of Applications for AMD’s AI Engines”, ARC 2024

Nov 21, 2025 | Technical University of Darmstadt | H2RC | Versal AIE graph framework | 6

High-Level Approach

● Rework Graphtoy constructs to bring them closer to AIE syntax

● Use source-to-source translation to generate AIE code
– Utilize constexpr code execution to off-load graph

construction / analysis to the compiler

● Requires rewrite of most parts of Graphtoy
– Now called cgsim (Compute Graph Simulator)

Nov 21, 2025 | Technical University of Darmstadt | H2RC | Versal AIE graph framework | 7

Compile-time Code Execution in C++

1 constexpr auto compile_time_fibonacci = [] {
2 std::array<int, 20> result = {1, 1};
3
4 for (int i = 2; i < result.size(); ++i) {
5 result[i] = result[i - 1] + result[i - 2];
6 }
7
8 return result;
9 }();

● C++ code is usually compiled to machine code
– Executes at runtime

● Since C++11, code can be run at compile time (constexpr)
– Results can influence the compilation of other code

Nov 21, 2025 | Technical University of Darmstadt | H2RC | Versal AIE graph framework | 8

Compile-time Code Execution in C++

1 constexpr auto bad_code = [] {
2 int *result = new int[20];
3
4 /* compute fibonacci numbers */
5
6 return result; // Compile error!
7 }();

● Only a subset of C++ constructs can be executed at compile time

● Dynamic memory allocations are limited
– Memory can be allocated at compile time

– But only if it is also deallocated at compile time

– Compile-time allocations cannot escape compile-time execution

Nov 21, 2025 | Technical University of Darmstadt | H2RC | Versal AIE graph framework | 9

High-Level Overview

User graph definition,
kernel functions

Constexpr graph
serializer

Compile-time
graph instantiation

Clang parser / AST

Graph
structure
extraction

Kernel
function

extraction

Source
translator

Source
generator

Graph and kernel source files
for AMD aiecompiler

Standard
C++ compiler

Runtime graph
instantiation

Run graph

User Application Source-to-Source-Translator Simulation

Hardware

Nov 21, 2025 | Technical University of Darmstadt | H2RC | Versal AIE graph framework | 10

High-Level Overview

User graph definition,
kernel functions

Constexpr graph
serializer

Compile-time
graph instantiation

Clang parser / AST

Graph
structure
extraction

Kernel
function

extraction

Source
translator

Source
generator

Graph and kernel source files
for AMD aiecompiler

Standard
C++ compiler

Runtime graph
instantiation

Run graph

User Application Source-to-Source-Translator Simulation

Hardware

Nov 21, 2025 | Technical University of Darmstadt | H2RC | Versal AIE graph framework | 11

High-Level Overview

User graph definition,
kernel functions

Constexpr graph
serializer

Compile-time
graph instantiation

Clang parser / AST

Graph
structure
extraction

Kernel
function

extraction

Source
translator

Source
generator

Graph and kernel source files
for AMD aiecompiler

Standard
C++ compiler

Runtime graph
instantiation

Run graph

User Application Source-to-Source-Translator Simulation

Hardware

Nov 21, 2025 | Technical University of Darmstadt | H2RC | Versal AIE graph framework | 12

High-Level Overview

User graph definition,
kernel functions

Constexpr graph
serializer

Compile-time
graph instantiation

Clang parser / AST

Graph
structure
extraction

Kernel
function

extraction

Source
translator

Source
generator

Graph and kernel source files
for AMD aiecompiler

Standard
C++ compiler

Runtime graph
instantiation

Run graph

User Application Source-to-Source-Translator Simulation

Hardware

Nov 21, 2025 | Technical University of Darmstadt | H2RC | Versal AIE graph framework | 13

Compute Kernels in cgsim

 1 COMPUTE_KERNEL(aie, adder_kernel,
 2 KernelReadPort<float> in1, KernelReadPort<float> in2,
 3 KernelWritePort<float> out)
 4 {
 5 while (true) {
 6 const float val = (co_await in1.get()) + (co_await in2.get());
 7 co_await out.put(val);
 8 }
 9 }
10
11 COMPUTE_KERNEL(aie, squaring_kernel,
12 KernelReadPort<float> in,
13 KernelWritePort<float> out)
14 {
15 while (true) {
16 const float val = co_await in.get();
17 co_await out.put(val * val);
18 }
19 }

Nov 21, 2025 | Technical University of Darmstadt | H2RC | Versal AIE graph framework | 14

Compute Graphs in cgsim

 1 COMPUTE_GRAPH constexpr auto the_graph = make_compute_graph_v<[] (
 2 IoConnector<float> in1, IoConnector<float> in2
 3) {
 4 IoConnector<float> squared, out;
 5
 6 squaring_kernel(in1, squared);
 7 adder_kernel(squared, in2, out);
 8
 9 return std::make_tuple(squared, out);
10 }>;

x² +

Nov 21, 2025 | Technical University of Darmstadt | H2RC | Versal AIE graph framework | 15

Graph Serialization

● Parsing arbitrary user-provided code is hard

● Compile-time code execution can make parsing easier
– Instantiate the compute graph at compile time

– Gather information with traits / template metaprogramming

– Serialize the graph into a constexpr variable

● Result: Problem reduced to parsing a flat data structure

Nov 21, 2025 | Technical University of Darmstadt | H2RC | Versal AIE graph framework | 16

High-Level Overview

User graph definition,
kernel functions

Constexpr graph
serializer

Compile-time
graph instantiation

Clang parser / AST

Graph
structure
extraction

Kernel
function

extraction

Source
translator

Source
generator

Graph and kernel source files
for AMD aiecompiler

Standard
C++ compiler

Runtime graph
instantiation

Run graph

User Application Source-to-Source-Translator Simulation

Hardware

Nov 21, 2025 | Technical University of Darmstadt | H2RC | Versal AIE graph framework | 17

Graph Ingestion

1. Read source files, build Clang AST

2. Scan for compute graphs (marked by attribute)

3. Evaluate each graph expression
– Clang runs the user-provided constexpr code

– Returns serialized form of the graph

4. Deserialize (unflatten) the graph

Nov 21, 2025 | Technical University of Darmstadt | H2RC | Versal AIE graph framework | 18

High-Level Overview

User graph definition,
kernel functions

Constexpr graph
serializer

Compile-time
graph instantiation

Clang parser / AST

Graph
structure
extraction

Kernel
function

extraction

Source
translator

Source
generator

Graph and kernel source files
for AMD aiecompiler

Standard
C++ compiler

Runtime graph
instantiation

Run graph

User Application Source-to-Source-Translator Simulation

Hardware

Nov 21, 2025 | Technical University of Darmstadt | H2RC | Versal AIE graph framework | 19

Graph Source Generation

● Partition the graph into multiple
kernel realms
– AIE, HLS, CPU, …

● Emit graph definition source file(s)
for each realm
– Realm-specific source generators

● AIE generator:
– Kernel declarations & instantiations
– Graph connectivity

Graph def.
for HW A

Graph def.
for HW B

Realm A

Realm B

Nov 21, 2025 | Technical University of Darmstadt | H2RC | Versal AIE graph framework | 20

High-Level Overview

User graph definition,
kernel functions

Constexpr graph
serializer

Compile-time
graph instantiation

Clang parser / AST

Graph
structure
extraction

Kernel
function

extraction

Source
translator

Source
generator

Graph and kernel source files
for AMD aiecompiler

Standard
C++ compiler

Runtime graph
instantiation

Run graph

User Application Source-to-Source-Translator Simulation

Hardware

Nov 21, 2025 | Technical University of Darmstadt | H2RC | Versal AIE graph framework | 21

Kernel Function Extraction

● Determine source range of each
used kernel

● Transform each kernel in a realm-
specific way

● Copy referenced source snippets
into the kernel source file
– Functions, variables, types, include

directives, ...

 1 static float sum_squared(
 2 std::span<const float> data
 3) {
 4 float sum = 0;
 5 for (auto f: data)
 6 sum += f * f;
 7 return sum;
 8 }
 9
10 COMPUTE_KERNEL(aie, ...) {
11 // ...
12
13 float signal_energy =
14 sum_squared(samples);
15
16 // ...
17 }

Nov 21, 2025 | Technical University of Darmstadt | H2RC | Versal AIE graph framework | 22

 1 COMPUTE_KERNEL(aie, adder_kernel,
 2 KernelReadPort<float> in1, KernelReadPort<float> in2,
 3 KernelWritePort<float> out)
 4 {
 5 while (true) {
 6 const float val = (co_await in1.get()) + (co_await in2.get());
 7 co_await out.put(val);
 8 }
 9 }

AIE Source Transformation

● Remove all co_await tokens (used in cgsim port I/O)
– Asynchronous calls → synchronous calls

● Generate kernel entry thunk function
– Wrapper classes translating generic get()/put() to AIE-specific calls

Generated AIE kernel

Autogenerated
thunk function:

Convert arguments

Real kernel
main function

AIE framework

AIE tile boot function

 1 void adder_kernel_thunk(
 2 adf::input_async_buffer<...> xlat_kparam_0,
 3 adf::input_async_buffer<...> xlat_kparam_1,
 4 adf::output_async_buffer<...> xlat_kparam_2
 5) {
 6 adder_kernel_impl(
 7 KernelReadPort<...> (xlat_kparam_0),
 8 KernelReadPort<...> (xlat_kparam_1),
 9 KernelWritePort<...>(xlat_kparam_2)
10);
11 }

Nov 21, 2025 | Technical University of Darmstadt | H2RC | Versal AIE graph framework | 23

AIE API & Intrinsics in cgsim

● AIE intrinsics and API calls required to fully leverage AIEs
● AMD provides an x86 implementation of AIE intrinsics

– Required for x86sim simulator
– C++ headers and static libraries

● cgsim can use these headers too
– Enables writing AIE SIMD code in cgsim
– Syntax and semantics identical to Vitis

Nov 21, 2025 | Technical University of Darmstadt | H2RC | Versal AIE graph framework | 24

High-Level Overview

User graph definition,
kernel functions

Constexpr graph
serializer

Compile-time
graph instantiation

Clang parser / AST

Graph
structure
extraction

Kernel
function

extraction

Source
translator

Source
generator

Graph and kernel source files
for AMD aiecompiler

Standard
C++ compiler

Runtime graph
instantiation

Run graph

User Application Source-to-Source-Translator Simulation

Hardware

Nov 21, 2025 | Technical University of Darmstadt | H2RC | Versal AIE graph framework | 25

Evaluation Strategy: AIE → cgsim → AIE

1. Port example AIE applications (from AMD) to cgsim
– Small performance-focused demos

– Hand-optimized AIE code

2. Then extract the graphs again
– Turns cgsim code back into AIE code

3. Profile the graphs in the AIE simulator
– Throughput and latency

– Simulator performance

Nov 21, 2025 | Technical University of Darmstadt | H2RC | Versal AIE graph framework | 26

Evaluation Strategy: Selection of Examples

● Examples selected to stress different aspects of cgsim

● Bitonic sort
– Relies heavily on AIE intrinsics

● Farrow filter
– Two-kernel graph, optimized for throughput

– Gets close to theoretical performance limits of AIE tiles

– Stresses kernel-to-kernel communication

● Others: IIR filter (throughput), Bilinear Interpolation (intrinsics)

Nov 21, 2025 | Technical University of Darmstadt | H2RC | Versal AIE graph framework | 27

Results: Graph Correctness (cgsim → AIE)

● Auto-extracted graphs compile with AMD toolchain

● Ported graphs produce correct outputs
– Bit-for-bit identical in cgsim and AMD’s simulators

– Validated with test vector files

Nov 21, 2025 | Technical University of Darmstadt | H2RC | Versal AIE graph framework | 28

Results: Graph Performance (cgsim → AIE)¹

Graph Input block size
AMD

(ns / block)
This work

(ns / block)
Relative

performance

Bitonic 16 floats 3557 4169 85.32 %

Farrow 1024 samples 913 1019 89.58 %

IIR 2048 samples 5410 5385 100.46 %

Bilinear 256 pixels 484 567 85.33 %

¹Determined via cycle-approximate AIE architecture simulator (aiesim)

Nov 21, 2025 | Technical University of Darmstadt | H2RC | Versal AIE graph framework | 29

Results: Graph Performance (cgsim → AIE)

● cgsim generated kernels achieve 85 – 100 % of original
performance

● Performance differences due to code changes
– Wrapper for AIE to cgsim type conversion

– Impact on VLIW instruction scheduling
● Insertion of NOPs during kernel initialization

– Amortizing for larger block sizes

– In IIR case cgsim achieves slight performance improvement

● Hand-optimization through cgsim possible

Nov 21, 2025 | Technical University of Darmstadt | H2RC | Versal AIE graph framework | 30

Results: Simulator Performance

Graph Repetitions
cgsim

(seconds)
AMD x86sim

(seconds)
AMD aiesim

(seconds)

Bitonic 1024 14.3 22.9 5826

Farrow 512 22.3 20.7 4287

IIR 256 18.2 21.4 4346

Bilinear 1 15.0 15.6 3536

Nov 21, 2025 | Technical University of Darmstadt | H2RC | Versal AIE graph framework | 31

Results: Simulator Performance

● cgsim has very little overhead
– Simulation runtime dominated by AIE intrinsics

– < 0.1% of time spent in cgsim library

– Fast despite being single-threaded

● AMD x86sim is slightly faster in 1 of 4 cases (Farrow)
– Multiple compute heavy-kernels

– Leverages multi-threading

– Suffers from high synchronization overhead

Nov 21, 2025 | Technical University of Darmstadt | H2RC | Versal AIE graph framework | 32

Conclusion

● In-application graph simulation and code extraction framework
targeting AMD Versal AIEs cgsim

● Hybrid source-to-source translator approach
– Compile-time preprocessing of C++ AST

– Lowers complexity of AST introspection

● Comparable graph performance to hand-optimized kernels
– Optimizations can be applied through cgsim

● Foundation for multi-target code generation already built

Nov 21, 2025 | Technical University of Darmstadt | H2RC | Versal AIE graph framework | 33

Future Work

● Only AIE code-generation backend implemented
– We are currently adding support for HLS kernels

● No support for templated kernels yet
– Requires complex template metaprogramming / type traits

– Work in progress

Nov 21, 2025 | Technical University of Darmstadt | H2RC | Versal AIE graph framework | 34

Thank you for your attention!

● Any questions? Contact us: jonathan.strobl@gmx.de

● We release cgsim as open-source software at:

https://github.com/esa-tu-darmstadt/cgsim

	Slide 1
	Slide 2
	Slide 3
	page7
	Slide 5
	page8
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	page14
	page15
	page16
	Slide 16
	page23
	Slide 18
	page26
	Slide 20
	page29
	page30
	Slide 23
	Slide 24
	page33
	page34
	page41
	page42
	Slide 29
	page43
	page44
	page45
	page46
	page47

