
Co-Exploration of RISC-V Processor
Microarchitectures and FreeRTOS Extensions for

Lower Context-Switch Latency
Markus Scheck∗

scheck@esa.tu-darmstadt.de
Technical University of Darmstadt

Darmstadt, Hesse, Germany

Tammo Mürmann∗
muermann@esa.tu-darmstadt.de
Technical University of Darmstadt

Darmstadt, Hesse, Germany

Andreas Koch
koch@esa.tu-darmstadt.de

Technical University of Darmstadt
Darmstadt, Hesse, Germany

Abstract
Embedded real-time systemsmust respond to external events
within tightly bounded timeframes to ensure safety, correct-
ness, and reliability. While Real-Time Operating Systems
(RTOSes) ease the development of complex applications by
providing abstractions for multi-tasked execution, they in-
troduce overheads in the form of task switching latency
and jitter, which impact timing predictability. Minimizing
these effects is essential for reducing response times and
enabling robust worst-case timing analysis. We present RTO-
SUnit, a configurable hardware acceleration unit designed to
reduce context-switch latency and jitter in embedded real-
time systems. By integrating the RTOSUnit into three RISC-V
cores of varying complexity, we demonstrate its portability.
Through a range of configurations, from lightweight sched-
uling acceleration to full context-switch and -preloading
support, RTOSUnit achieves up to 76% reduction in mean
context-switch latency and can be configured to completely
eliminate jitter on selected cores. Area overheads in 22 nm
ASIC implementations range from negligible (within EDA
tool heuristics noise) to 44 %, with all configurations main-
taining viable operating frequencies and power envelopes
suitable for embedded systems. RTOSUnit offers a flexible
and efficient, open-source1 foundation for hardware-assisted
real-time scheduling, paving the way for broader integration
into future embedded SoCs.

CCS Concepts: • Computer systems organization→ Ar-
chitectures; Real-time operating systems; Real-time
system architecture; Embedded hardware.

Keywords: FreeRTOS; Context-Switch; Latency; Jitter; Real-
Time; RTOS; RISC-V

∗Both authors contributed equally to this research.
1https://github.com/esa-tu-darmstadt/RTOSUnit_Integration

This work is licensed under a Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License.
ASPLOS ’26, Pittsburgh, PA, USA.
© 2026 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-2359-9/2026/03
https://doi.org/10.1145/3779212.3790141

ACM Reference Format:
Markus Scheck, Tammo Mürmann, and Andreas Koch. 2026. Co-
Exploration of RISC-V Processor Microarchitectures and FreeRTOS
Extensions for Lower Context-Switch Latency. In Proceedings of
the 30th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, Volume 2 (ASPLOS
’26), March 21–26, 2026, Pittsburgh, PA, USA. ACM, New York, NY,
USA, 15 pages. https://doi.org/10.1145/3779212.3790141

1 Introduction
Embedded real-time systems must respond to external stim-
uli within strict timing bounds to ensure safety, correctness,
and reliability. While such guarantees can be achieved with
low-level "bare-metal" software implementations, Real-Time
Operating Systems (RTOSes) simplify development by offer-
ing a multi-tasked programming model. This abstraction
allows developers to define multiple concurrent tasks that in-
teract via synchronization primitives, promoting modularity
and maintainability.

However, this simplification introduces overhead: the RT-
OS manages task execution by scheduling, state tracking,
and context switching – services that, while useful, increase
code size and introduce latency. During a context switch, the
RTOS saves the current task’s state to the stack, invokes the
scheduler to select the next task, and restores the selected
task’s state. The total time required for this process is known
as context-switch latency.

Context switching directly impacts the system’s response
time to external events. While simple event handling can be
performed within the interrupt service routine (ISR), more
complex logic must be deferred to tasks, requiring a full con-
text switch before handling can commence. Consequently,
reducing context-switch latency improves the minimal re-
sponse time to such events. While this work focuses on the
deferred handling case, note that our context storing opti-
mizations also accelerate the non-deferred handling case.

Additionally, many scheduling algorithms introduce vari-
ability in context-switch durations, reducing predictability
and complicating worst-case execution time (WCET) anal-
ysis. We define the difference between the maximum and
minimum observed context-switch latency as jitter. Minimiz-
ing both latency and jitter is essential for predictable timing,
especially in control loops or under high system load.

https://orcid.org/0009-0006-3098-3177
https://orcid.org/0009-0004-6617-5230
https://orcid.org/0000-0002-1164-3082
https://github.com/esa-tu-darmstadt/RTOSUnit_Integration
https://creativecommons.org/licenses/by-nc-nd/4.0
https://creativecommons.org/licenses/by-nc-nd/4.0
https://creativecommons.org/licenses/by-nc-nd/4.0
https://doi.org/10.1145/3779212.3790141
https://doi.org/10.1145/3779212.3790141

ASPLOS ’26, March 21–26, 2026, Pittsburgh, PA, USA. Markus Scheck, Tammo Mürmann, & Andreas Koch

Application Kernel

Running
task 1

Save context
of task 1

Scheduling

Restore context
of task 2

Running
task 2

Resume task 2

Interrupt:
(1) preemptively by expired timer
- or -
(2) externally by peripherals
- or -
(3) voluntarily by running task

b

a

c

Figure 1. Simplified context switching in a typical real-time
system. During an interrupt, the processor saves the current
task’s context, selects the next task, restores its context, and
resumes execution from where it was suspended.

To address these challenges, this work introduces a con-
figurable hardware unit into the processor for accelerating
scheduling and context switching in FreeRTOS. By offload-
ing key RTOS functions to hardware, our approach reduces
worst- and best-case context-switch latency as well as jitter
– resulting in faster, more predictable responses. These im-
provements support the development of embedded real-time
systems that must adhere to strict deadlines and response-
time bounds, and that require low execution-time variability
for effective modeling and certification.

The key contributions of this work are as follows:
• We present a highly configurable hardware unit dedi-
cated to scheduling and context-switching.

• We demonstrate the portability of our approach and
its applicability through integration into three differ-
ent RISC-V processors, ranging from microcontroller
(MCU) to powerful superscalar out-of-order cores.

• We greatly reduce context-switch latency and jitter
• We analyze overheads in power, maximum core clock
frequency, and area using a 22nm ASIC process.

The remainder of this paper is structured as follows: Sec-
tion 2 reviews related work. Section 3 describes the tar-
get RISC-V cores and the scheduling and context-switching
mechanisms of FreeRTOS. Section 4 details the implementa-
tion of RTOSUnit, while Section 5 discusses its integration
into the RISC-V processors. Section 6 presents an evaluation
of RTOSUnit in terms of performance, implementation over-
head, and power requirements. Finally, Section 7 summarizes
the findings and discusses directions for future work.

2 Related Work
Many attempts at hardware-supported scheduling and con-
text-switching have been made. STRON by Nakano et al. [18]
offloads semaphores, task tracking, interrupts, and schedul-
ing to a coprocessor, while context management remains

the responsibility of the main processor. A similar hard-
ware/software partitioning is used by Andrews et al. [1]
and Vetromille et al. [25]. Both identify task scheduling as a
major source of jitter and thus a key candidate for hardware
acceleration. Morton et al. [17] quantify the benefits of selec-
tive hardware offloading, showing scheduling acceleration
provides significant gains with minimal area cost. Chandra
et al. [5] also focus on scheduling and synchronization accel-
eration, opting to design their hardware through high-level
synthesis rather than manual HDL development.
However, these approaches rely on memory-mapped I/O

(MMIO) for communication with the host processor, intro-
ducing higher latencies and bus contention. Our approach
uses tightly coupled custom instructions, reducing overhead
and allowing efficient context save/restore acceleration via
direct processor integration.

Balas et al. [3] reduce context-switch latency by snapshot-
ting half the register file upon interrupt entry,2 and storing
the snapshot values in parallel using a dedicated memory
port.3 The other half of the register file is saved concurrently
in software via the LSU’s regular memory port. In contrast
to our bank switching approach, their method accelerates
only part of the task’s context saving and does not provide
hardware support for context restoration or scheduling. Ad-
ditionally, their work is deeply integrated into the CV32E40P
processor, while we aim for (and demonstrate) better porta-
bility across cores via our modular approach.

Rafla et al. [20] integrate custom instructions for context
save and restore into a MIPS processor. These instructions
interact with a banked context memory and require two cy-
cles to transfer the register state. Similarly, Grunewald et al.
[11] propose assigning each task its own register file. Con-
text switching is then reduced to simply switching register
banks. While effective, both approaches likely incur high
area costs, especially when supporting many concurrent
tasks, though neither work actually quantifies this overhead.
Both approaches inherently limit the number of tasks to
which context save and restore acceleration can be applied.
In contrast, our method uses main memory to store task
state, making the acceleration independent of task count and
thus more scalable. We can optionally accelerate scheduling
in hardware, as well, but our solution would then also be
limited to a statically configured ceiling in the number of
tasks.
Some commercial ISAs offer similar mechanisms. ARM

AArch32 introduces shadow registers for the Fast Interrupt
(FIQ)mode, reducing context-switch latency by removing the
need to save/restore the banked registers [2]. Microchip’s

2https://github.com/pulp-platform/cv32e40p/blob/
6c5c2d6bdfb9c5d743aad240ce6e1ae7a0baf1b8/rtl/cv32e40p_register_
file_ff.sv#L194-L308
3Note that the paper is inconsistent in this regard:While their Fig. 3 depicts a
bank-switching mechanism, the released implementation actually performs
snapshotting.

https://github.com/pulp-platform/cv32e40p/blob/6c5c2d6bdfb9c5d743aad240ce6e1ae7a0baf1b8/rtl/cv32e40p_register_file_ff.sv#L194-L308
https://github.com/pulp-platform/cv32e40p/blob/6c5c2d6bdfb9c5d743aad240ce6e1ae7a0baf1b8/rtl/cv32e40p_register_file_ff.sv#L194-L308
https://github.com/pulp-platform/cv32e40p/blob/6c5c2d6bdfb9c5d743aad240ce6e1ae7a0baf1b8/rtl/cv32e40p_register_file_ff.sv#L194-L308

Co-Exploration of RISC-V Processors and FreeRTOS Extensions for Lower Context-Switch Latency ASPLOS ’26, March 21–26, 2026, Pittsburgh, PA, USA.

PIC32MZ expands this to seven shadow register sets for
fast handling of multiple interrupt sources [16]. While these
techniques work well for short non-deferred interrupt han-
dling, they are unsuitable for general-purpose context switch-
ing, as the inactive register banks are inaccessible to soft-
ware, inhibiting a replacement of their contents. Our ap-
proach, by contrast, accelerates both context management
and task scheduling, supporting deferred and non-deferred
interrupt handling alike. Intel’s x86 provides a hardware
context-switching instruction [7], but it proved to be slower
than software solutions under flat memory models as used
by modern operating systems, and was removed in x86-64
[8, 12].

Other works [22, 29] follow a vastly different approach for
reducing context-switch overhead. Rather than accelerating
context saving and restoring directly in hardware, the au-
thors modify the compiler to identify so-called switch points,
i.e., program locations where only a small subset of registers
is live. For each switch point, specialized software routines
for context saving and restoring are generated, minimizing
the size of state that must be preserved. However, when an
interrupt occurs, the hardware must defer handling until
execution actually reaches the next switch point, introduc-
ing additional jitter. As a consequence, fully preemptive task
scheduling is effectively transformed into a coroutine-like
execution model with restricted preemption points. More-
over, this approach is evaluated solely in simulation and has
not been implemented in hardware, nor does it provide any
acceleration of the scheduling mechanism itself.
Nurmi et al. [19] propose the HETI architecture as an al-

ternative to RTOS-based systems. Their approach models
tasks as interrupt-triggered routines that are executed directly
within an ISR. To reduce interrupt latency, the processor is
extended with a dedicated register file bank per interrupt,
which is automatically selected on interrupt entry. While
their design enables very fast context switching by eliminat-
ing register save and restore operations, the hardware area
overhead scales rapidly with the number of supported inter-
rupts. Furthermore, the programming model is restrictive
compared to an RTOS, supporting only a single main thread
and one ISR per interrupt.
Cheshmikhani et al. [6] propose a hardware mechanism

that caches interrupt handler addresses to avoid repeated han-
dler lookups. Their work targets application-class processors
running Linux, where interrupt dispatch involves dynamic
and potentially costly handler resolution. In contrast, the
small embedded systems that we target commonly rely on
either a single shared interrupt handler or a small, statically
defined interrupt vector table with constant-time handler
selection, which leaves little opportunity for such caching
mechanisms to reduce interrupt latency in this domain.

Because scheduling and context switching both contribute
significantly to total context-switch latency, and scheduling

is a major factor in jitter, combining both in hardware is a nat-
ural progression. Zagan et al. [26] replicate all state elements
across the processor pipeline and register file, allowing their
scheduler coprocessor to select the active context without
flushing the pipeline. While this enables near-instantaneous
switching, it significantly increases the area and lowers the
maximum operating frequency. Doidu et al. [9] present a sim-
ilar design where all pipeline and register states are banked,
and the scheduler runs on the negative clock edge. They
report a 0.5-cycle context-switch latency but do not evaluate
frequency or area overhead. Given the similarity to Zagan
et al., it is likely that their design suffers from the same
frequency degradation and area overheads. FASTCHART
[14, 15, 24] pushes scheduling, synchronization, and context
handling fully into hardware. However, their implementa-
tion assumes the entire register file can be stored to memory
in a single cycle, which the authors themselves acknowledge
as unrealistic [15]. Our approach avoids this impracticality
by using register banking and latency-hiding techniques.
Furthermore, their approach uses one scheduling queue per
priority level, while we implement a unified queue. In conse-
quence, our approach offers greater flexibility by only limit-
ing the total number of tasks, not the number of tasks per
priority level.
In contrast to prior work, our approach combines low-

latency scheduling and context switching within a single,
tightly integrated hardware unit. Additionally, while some
work focuses exclusively on scheduling or context manage-
ment, and others compromise frequency and area, our solu-
tion strikes a practical overall balance. We support real-time
constraints by improving both worst-case and best-case la-
tency, reducing jitter, and maintaining compatibility across
multiple RISC-V cores. To the best of our knowledge, this
combination of configurability, portability, and efficiency has
not been achieved previously.

3 HW/SW Platform Selection
To enable the practical implementation and evaluation of
our approach, we must select both a processor core and an
RTOS for extension.

We adopt the RISC-V Instruction Set Architecture due to
its openness, extensibility, and extensive ecosystem of open-
source cores spanning a wide range of complexity. Critically,
RISC-V supports custom instructions, which we leverage to
tightly integrate the proposed functionality. We demonstrate
our approach on three representative RISC-V processors:
(1) CV32E40P, a microcontroller-class, 4-stage pipeline pro-
cessor [10], (2) CVA6, an application-class, 6-stage pipeline
processor [27], and (3) NaxRiscv, a powerful superscalar out-
of-order processor supporting variable-latency instructions

ASPLOS ’26, March 21–26, 2026, Pittsburgh, PA, USA. Markus Scheck, Tammo Mürmann, & Andreas Koch

max
priority

Prio 0
Prio 1
Prio 2
Ready Lists

Running
Task

Delay List

task sleeps duration elapsed

Event List
resource unavailable resource available

remove

Re-queue task to end of queue

create

yield or
preemptive
removal

b

a

c

g
f

e d

d f

Figure 2. FreeRTOS scheduling algorithm. Tasks are sched-
uled in a round-robin manner within priorities, while the
next task is always drawn from the highest priority of the
ready tasks. In addition to the ready lists, FreeRTOS main-
tains a delay list for tasks suspended for a specific number
of time slices, and event lists for tasks waiting on events.

[23]. These processors span a broad spectrum of implemen-
tation complexity and are chosen to demonstrate the porta-
bility of our approach across diverse RISC-V cores. All three
processors are evaluated in their RV32IM_Zicsr configuration.
Although RISC-V is particularly well suited to our work,

other architectures could be supported with modest engi-
neering effort, provided they offer well-defined interrupt
entry and exit boundaries, a clearly specified architectural
state to be saved, and support for custom instructions.

For our evaluation, we use the popular FreeRTOS, which
is lightweight, open-source, and supports RISC-V. Other
RTOSes – such as Zephyr [28] or ChibiOS [21] – feature
similar architectures and scheduling algorithms, and could
also benefit from RTOSUnit with moderate engineering ef-
fort. We expect such extensions to yield comparable results
and, consequently, solely focus on FreeRTOS in this work.
Figure 2 shows an overview of FreeRTOS’s scheduling

algorithm. To enforce fair scheduling among tasks of equal
priority, FreeRTOS uses time slices: a timer interrupt preempts
the running task after a fixed duration (a), after which the
highest-priority ready task is selected (b). Tasks may also
voluntarily yield (c) by triggering a software interrupt.

FreeRTOS provides synchronization primitives such as
mutexes and semaphores. When a task attempts to acquire
a blocked resource, it is removed from the ready list and
placed into the event list (d). It returns to the ready list when
the resource becomes available (e). Tasks may also suspend
themselves for a defined time, during which they are placed
in a delay list (f). This list is updated on every timer interrupt,
and tasks whose delay has expired are re-added to the ready
list (g). If a task waits on a resource with a timeout, the first
event (either unblocking or timeout) causes reactivation.

Table 1. Overview of the proposed custom instructions

Custom Instruction Description Required for
ADD_READY Insert task into ready list HW scheduling
ADD_DELAY Insert task into delay list HW scheduling
RM_TASK Remove task from HW lists HW scheduling
SET_CONTEXT_ID Set the next task w/o HW scheduling
GET_HW_SCHED Get next task from HW HW scheduling
SWITCH_RF Switch back to the APP RF Context storing w/o loading

All of these lists store pointers to Task Control Blocks
(TCBs), which are expressed as C structs that hold essen-
tial information for each task. A global variable, currentTCB,
points to the TCB of the currently running task and is up-
dated for the next task during scheduling.

While the scheduler selects the next task, context switch-
ing is responsible for transitioning execution between tasks.
As illustrated in Figure 1, context switching comprises three
phases: (a) saving the current task’s context, (b) scheduling
to select the next task, and (c) restoring its context.
The context of a task is saved by pushing its general-

purpose registers, processor configuration (e.g., interrupt
settings), and program counter onto its stack (cf. Figure 4
(a)). The address of the saved context (i.e., the stack pointer)
is stored in the task’s TCB, allowing the stored state to be
retrieved later (cf. Figure 4 (b)). The RISC-V architecture
includes 32 general-purpose registers, one of which is hard-
wired to zero. The global pointer register provides a fixed
offset for accessing global variables and is typically initial-
ized during program startup. The thread pointer register
points to thread-local storage, with usage defined by the OS.
In FreeRTOS, neither register is modified after initialization.
Consequently, the global pointer and thread pointer regis-
ters only contain static data in the RTOS execution scenario,
leaving 29 registers to be preserved. Additionally, RISC-V
uses Control and Status Registers (CSRs) to store the proces-
sor’s configuration and auxiliary information. The mstatus

CSR (processor state) and the mepc CSR (program counter
at the time of interruption) are additionally saved to enable
task resumption and state restoration. In total, a context
comprises 31 32-bit words.
Saving the context not only enables task switching but

also frees the registers for use during scheduling. Restoring
the new task’s context involves retrieving the address of the
saved state from its TCB and loading the saved values (cf.
Figure 4 (d)). Context switching is initiated by an interrupt
originating from a hardware timer (for time slicing), external
sources (for deferred interrupt handling), or software (vol-
untary yield). Execution resumes in the new task using the
mret instruction.

4 RTOSUnit Implementation
This section presents the RTOSUnit, a configurable hard-
ware accelerator for task scheduling and context switching.

Co-Exploration of RISC-V Processors and FreeRTOS Extensions for Lower Context-Switch Latency ASPLOS ’26, March 21–26, 2026, Pittsburgh, PA, USA.

RISC-V Processor

Pipeline

RF1
(APP)

RF2
(ISR)

Regfile

F D X M We

RTOSUnit

Store FSM

Restore FSM

HW Scheduler

Read RF

Write RF

Instructions
(custom, mret)

Switch RF

Enters ISR

mstatus
mepc
mcause

CSRs

Read / Write CSRs

Memory

Memory Interface Arbitration

RF write trace

b

a

c

g

f

d

d

Figure 3. Proposed architecture overview. Added compo-
nents are shown in green; required processor changes in
yellow. Depending on the configuration, the RTOSUnit ac-
celerates scheduling and/or context switching via custom
instructions. Additionally, the register file (RF) must be du-
plicated. Blue and magenta arrows indicate active datapaths
during ISR and application execution, respectively. A generic
five-stage pipeline is shown, while depth and stage functions
differ between specifically supported processors.

The design emphasizes fine-grained configurability, allow-
ing users to offload context storing, loading, and/or sched-
uling to hardware. We select those features since they have
the largest impact on context switch duration and, hence,
are prime targets for acceleration. We use a combination of
letters to describe which functionality has been moved to
hardware. (vanilla) refers to the baseline case solely imple-
mented in software, while (SLT) (Store Context, Load Context,
Task Scheduling) has all of these operations accelerated by
the RTOSUnit.

Unlike memory-mapped approaches, our RTOSUnit uses
custom instructions for tight integration with the processor,
minimizing latency and communication overhead. Table 1
summarizes the new instructions; Figure 3 outlines the archi-
tecture and interface required to support the full RTOSUnit
feature set. The interface is designed for minimal intrusion
into the processor and hence is specific to the use case. The
following subsections describe the necessary processor mod-
ifications and internal RTOSUnit components by feature.

4.1 Baseline (vanilla)
In the baseline case, context switching is handled entirely
in software. It is triggered by an interrupt, which may come
from a timer (time-slice expiration), software (voluntary
yield), or external events. Upon an interrupt, the proces-
sor enters an ISR, where the current task’s context is saved
to its stack (cf. Figure 4 (a)), a ready task is selected (c), and
its context is restored (d). If triggered by a timer, delayed

tasks are also updated and moved to the ready list during
scheduling if their delay has expired. Additionally, the timer
is reset only on timer interupts, that is, after its expiry. The
ISR concludes with an mret instruction, resuming execution
in the selected task.

4.2 Context Storing (S)
The (S) configuration accelerates context storing by enabling
immediate scheduler execution after an interrupt, eliminat-
ing the need for a software routine to first save the current
task’s context. Instead, we employ a latency-hiding scheme
and decoupled hardware-assisted background context stor-
ing.

To this end, we add an alternate register file bank to the pro-
cessor (cf. Figure 3 (a)), duplicating the 29 general-purpose
registers required for context representation. The mstatus

and mepc CSRs do not require replication, since they do not
need to be freed for executing the scheduler. Upon an in-
terrupt, the processor frees the register file, making fresh
registers immediately available, while a dedicated hardware
finite-state machine (cf. Figure 3 (b)) asynchronously stores
the previous context to memory. This allows the scheduler
to execute without delay (cf. Figure 4 (e)). A similar tech-
nique has been validated by Balas et al. [3], but we introduce
additional optimizations to reduce hardware overhead:

(1) Balas et al. [3] employ snapshotting to immediately free
half of the register file upon interrupt entry. While effective,
this approach copies all 16 freed registers in parallel into
a second register file bank within a single cycle, incurring
substantial wiring overhead and routing congestion. To avoid
the need for such additional register file ports, we instead use
a sparse MUX structure combined with bank switching: only
RF1 is connected to both the core and the RTOSUnit, whereas
RF2 is connected exclusively to the core (cf. Figure 3(d)). This
reduced overhead allows us to duplicate the entire register
file efficiently, thereby freeing all general-purpose registers
upon interrupt entry.
(2) We remove the need for a second memory port by

arbitrating memory access between the processor and RTO-
SUnit, where the processor has priority (cf. Figure 3 (g)).
Hence, both components share a single memory port, where
the RTOSUnit utilizes the dead/idle cycles not required by
the processor.
(3) We reserve a fixed memory region inside the proces-

sor’s DMEM to save the tasks’ contexts and assign each task
a 32-word-sized chunk. Additionally, we introduce a unique
task ID that allows for quickly deriving the address of the
assigned context memory by indexing the 32-word chunks
with said ID. Thus, the memory addresses of saved contexts
remain constant, avoiding updating the saved contexts’ mem-
ory address in the TCB in contrast to (vanilla) (cf. Figure 4
(b)). The size of this fixed memory region defines an up-
per bound for the task count, but can be chosen arbitrarily.
Since we use 32-word-sized chunks, we over-provision by

ASPLOS ’26, March 21–26, 2026, Pittsburgh, PA, USA. Markus Scheck, Tammo Mürmann, & Andreas Koch

(SL) configuration:

[...] # Current task

ISR:
 [...] # Check for exception
 [...] # Update delayed tasks
 [...] # Scheduling ctxId
 SET_CONTEXT_ID ctxId
 [...] # Update currentTCB
 mret

[...] # Next task

f

(SLT) configuration:

[...] # Current task

ISR:
 [...] # Check for exception
 GET_HW_SCHED
 [...] # Update currentTCB
 mret

[...] # Next task

(S) configuration:

[...] # Current task

ISR:
 [...] # Check for exception
 [...] # Update delayed tasks
 [...] # Scheduling ctxId
 SET_CONTEXT_ID ctxId
 [...] # Update currentTCB
 SWITCH_RF

 lw sp, currentTCB ctxAddr
 lw x5, 30 * 4(sp)
 csrw mepc, x5
 lw x5, 29 * 4(sp)
 csrw mstatus, x5
 lw x31, 28 * 4(sp)
 [...]
 lw x5, 2 * 4(sp)
 lw x1, 1 * 4(sp)
 lw sp, 0 * 4(sp)
 mret

[...] # Next task
re

st
or

e
co

nt
ex

t

Vanilla:

[...] # Current task

ISR:
 addi sp, sp, -30 * 4
 sw x1, 0 * 4(sp)
 sw x5, 1 * 4(sp)
 [...]
 sw x31, 27 * 4(sp)
 csrr x5, mstatus
 sw x5, 28 * 4(sp)
 csrr x5, mepc
 sw x5, 29 * 4(sp)
 sw sp, currentTCB ctxAddr

 [...] # Check for exception
 [...] # Update delayed tasks
 [...] # Scheduling
 [...] # Update currentTCB

 lw sp, currentTCB ctxAddr
 lw x5, 29 * 4(sp)
 csrw mepc, x5
 lw x5, 28 * 4(sp)
 csrw mstatus, x5
 lw x31, 27 * 4(sp)
 [...]
 lw x5, 1 * 4(sp)
 lw x1, 0 * 4(sp)
 addi sp, sp, 30 * 4
 mret

[...] # Next task

re
st

or
e

co
nt

ex
t

sa
ve

 c
on

te
xt

a

c

b

d

e

g

Decoupled HW context restoring

Alternate ISR register file is in use

Decoupled HW context saving
x2 = sp
x3 = gp (static, not saved)
x4 = tp (static, not saved)

Figure 4. ISR execution in software and hardware across different RTOSUnit configurations. As more features are offloaded,
the software ISR shortens and hardware parallelism increases. With full acceleration, the ISR only updates currentTCB.

one word (a context consists of 31 words), but this simplifies
the address generation to just shifting the task ID to the left
and prepending the offset of the context memory region.
In addition to the logic required for actually storing the

context, the RTOSUnit must be informed where to store
the context. To this end, we introduce a custom instruction,
SET_CONTEXT_ID, which is issued after the software scheduler
selects the next context. The instruction passes the selected
tasks ID to the RTOSUnit, which latches the ID and uses it
during the subsequent context switch to generate the store
address by indexing into the context memory region. Alter-
natively, the full context address could be passed to achieve
the same effect. However, because our later scheduling con-
figurations operate exclusively on IDs, we use IDs here for
consistency.

In theory, context storing completes in 31 cycles, plus any
stalls caused by prioritized processor memory accesses. In
practice, this latency is hidden by the significantly longer
time required to execute the scheduler concurrently.

After scheduling, the context of the selected task must be
restored. Due to our sparse MUX structure, the processor
must actively switch back to the application register file us-
ing the SWITCH_RF custom instruction. This switch-back gets
delayed while storing is in progress. While the (S) configu-
ration never actually required such stalling in our testing,
we have implemented it to ensure correctness and support
advanced configurations which are introduced later.

Integration-wise, (S) requires modifications to the instruc-
tion decoding of the processor, such that the added custom
instructions are known and reported to the RTOSUnit. In
addition to custom instructions, interrupt entries must be
traced as well. Furthermore, the register file must be dupli-
cated, (sparsely)multiplexed, and connected to the RTOSUnit.
Lastly, the RTOSUnit must be connected to the CSRs of the
processor.

4.3 Context Loading (SL)
Context loading is implemented similarly to context storing
by adding a restore FSM (cf. Figure 3 (f)). Once the custom
instruction SET_CONTEXT_ID announces the next task ID, the
RTOSUnit triggers its restore FSM to load the new context
concurrently (cf. Figure 4 (f)). This FSM performs the inverse
of the store FSM: It loads the context from memory and
writes it into the application register file and CSRs.

In this (SL) mode, the instruction SWITCH_RF for switching
back to the application register file is no longer required.
Instead, the register file bank switch is handled automatically
during the mret instruction, which ends the ISR and resumes
execution at the saved address in mepc. The mret instruction
is stalled until the context restore completes, preventing a
premature return to task execution before restoration has
finished.

Co-Exploration of RISC-V Processors and FreeRTOS Extensions for Lower Context-Switch Latency ASPLOS ’26, March 21–26, 2026, Pittsburgh, PA, USA.

Task ID

Priority

Valid Bit

Task ID

Priority

Valid Bit

Task ID

Priority

Valid Bit

Delay List

Delay Ticks Delay Ticks Delay Ticks

Sorted by Delay Ticks, then Priority

Timer
ElapsedDecrement Ticks

Task ID

Priority

Valid Bit

Task ID

Priority

Valid Bit

Task ID

Priority

Valid Bit

Ready List

Task ID
Priority

Sorted by Priority

Remove IDInvalidate entries matching ID

If Ticks == 0, add to Ready List

Get head
Re-queue task to end of queue to implement round-robin behavior

Priority
Delay Ticks

d

b

a

c

g

f

e

h

Figure 5. Hardware scheduler architecture. Magenta indi-
cates events triggered by custom instructions; orange marks
external events. The hardware scheduler implements the
FreeRTOS ready and delay lists, maintaining correct order
via iterative sorting. Timer interrupts decrement delay coun-
ters, moving tasks to the ready list when reaching zero.

Integration-wise, (L) only works in conjunction with (S),
and additionally requires mret tracing and stalling signals to
be added to the processor.

4.4 Task Scheduling (T)
Hardware-based task scheduling can be used independently
or alongside context storing and loading. In (T) mode, FreeR-
TOSes ready and delay lists are moved to hardware, while
the event list remains in software, as the RTOSUnit does not
manage synchronization primitives. Three custom instruc-
tions are added: (1) ADD_READY to add a task to the ready list,
(2) ADD_DELAY to add the running task to the delay list, and (3)
RM_TASK to remove a task from either hardware-maintained
list. Figure 5 illustrates the hardware scheduler structure.
Adding a task to the ready list requires its ID and priority
(a). The list is iteratively sorted in hardware by priority, pre-
serving the order among tasks with identical priorities (b).
Entries marked as invalid are sorted toward the tail of the
list. Our prototype uses bubble sort as the sorting algorithm
because it has low area requirements and a sufficient time
elapses between inserting a task and querying the head of
the list. For larger numbers of tasks in the system (and a
correspondingly longer ready list), faster algorithms may be
necessary to avoid stalls.

Task removal is achieved bymatching the task ID provided
by the RM_TASK instruction and clearing the valid bit of all
matching entries (c). Since only the currently running task
can be delayed, ADD_DELAY requires only the task’s priority
and delay duration as parameters (d).

On timer interrupts (detected via mcause), all delay coun-
ters are decremented (e). The delay list is sorted by remaining
delay time, with ties broken by priority (f). When a task’s
delay expires, it is moved to the ready list automatically (g).

In (T) mode, the custom instruction GET_HW_SCHED replaces
SET_CONTEXT_ID and returns the head of the ready list while
moving that entry to the tail of the ready list (h). To further re-
duce the ISR execution time, we modify the RISC-V hardware
timer – used exclusively for preemptive scheduling inter-
rupts – to auto-reset, eliminating the need for software-based
counter reads and compare register updates. Thus, given
the configuration (SLT), the ISR reduces to merely updating
currentTCB (cf. Figure 4 (g)). Since our hardware scheduling
uses task IDs rather than TCB pointers, we include a soft-
ware lookup table to map each task ID to its corresponding
TCB, enabling the required update of currentTCB.

Processor modifications for (T) are minimal: support for
custom instructions, interrupt source tracing, and auto-reset-
ting of the hardware timer. Note that the maximum number
of tasks is fixed at design time by the hardware queue size.
However, once this threshold is exceeded, the system can
fall back to software scheduling at the cost of forfeiting the
benefits of hardware scheduling.

The presented features allow for the following configura-
tion permutations: (S), (SL), (T), (ST), (SLT). We additionally
support optional features for further mean-case latency re-
duction, though at the expense of larger jitter. These options
are dirty bits (D), load omission (O), and preloading (P).

4.5 Dirty Bits (D)
Dirty bits accelerate context storing by avoiding unnecessary
memory writes when tasks modify only a subset of regis-
ters. To exploit this, each register in the application register
file is augmented with a dirty bit, which is set upon write.
During context storing, the RTOSUnit saves only the regis-
ters marked as dirty. After ISR completion, all dirty bits are
cleared. Integrating the (D) option requires a register write
tracing interface within the processor.

4.6 Load Omission (O)
Load omission skips context loading if the previous and next
selected tasks are identical. In this case, the application reg-
ister file already contains the correct context, eliminating
the need to reload it from memory.

4.7 Preloading (P)
When context storing, loading, and scheduling are all en-
abled, the ISR reduces to updating currentTCB based on the
next scheduled task ID. In this case, the context-switch la-
tency is bounded by the memory bandwidth.

Since hardware scheduling exposes the head of the ready
list – the task with the highest priority – it can be accessed
even outside the ISR. This enables an optional context preload-
ing mechanism that speculatively loads the context of the

ASPLOS ’26, March 21–26, 2026, Pittsburgh, PA, USA. Markus Scheck, Tammo Mürmann, & Andreas Koch

task at the head of the ready list, which is likely to run next.
A dedicated 31-word buffer is used to hold this preloaded
context. Because the RTOSUnit accesses memory at a lower
arbitration priority than the processor, preloading does not
interfere with ongoing computation, as long as no cache is
used, or, if one is, the RTOSUnit can bypass it.
Preloading operates in lockstep with context storing: as

each register is saved to memory, it is immediately over-
written with the corresponding preloaded value. Due to this
coupling, preloading is incompatible with the dirty-bit op-
tion.

Since tasks may enter the ready list immediately following
an interrupt, for instance, when a timer interrupt unblocks
delayed tasks, the speculatively preloaded context may not
match the actual next task. In such cases, the correct context
must be loaded from memory, resulting in the same latency
as if preloading had not been used in the first place.
If the preloaded context is correct, context loading can

be skipped entirely, significantly reducing context-switch
latency.

5 RTOSUnit Integration
While the main functionality resides within the RTOSUnit,
integrating it with a processor requires several architectural
modifications. Specifically, the register file must be replicated
and multiplexed (cf. Figure 3 (d)), custom instructions must
be integrated (cf. Figure 3 (e)), interrupt and mret signaling
must be managed, CSR access must be handled, and memory
arbitration must be implemented (cf. Figure 3 (g)).
We identified three micro-architectural features and two

integration decisions that significantly affect integration
complexity: instruction reordering, speculative execution,
register renaming, configuration of the RTOSUnit, and mem-
ory arbitration at the bus or Load/Store Unit (LSU) level. All
proposed custom instructions (cf. Table 1) update the RTO-
SUnit’s internal state and thereforemust execute in-order and
non-speculatively. More complex cores commonly reorder
and speculatively issue instructions to improve instruction-
level parallelism. Additionally, they use register renaming to
eliminate false dependencies (i.e., WAW and WAR hazards),
which may complicate register file replication and RTOSUnit
interfacing.

Among all custom instructions, SWITCH_RF is unique in that
it alters the processor’s microarchitectural state by switching
to the application register file. Since this change affects sub-
sequent instruction execution, it requires hazard-handling
logic: all prior instructions must commit to the ISR RF, while
all following instructions must utilize the APP RF. Depend-
ing on the pipeline depth, both prior and following instruc-
tions may be in the pipeline simultaneously. If both storing
and loading are enabled, register banks are switched au-
tomatically upon interrupt entry and exit (using the mret

instruction). These events act as synchronization points (e.g.,

pipeline flushes), allowing the switch to occur without addi-
tional control logic. Additionally, SWITCH_RFmust be delayed
while context storing is in progress to prevent premature
RF switching and the resulting overwriting of data that has
not yet been stored. We observed the need for such stalling
logic only in the (ST) and (SDT) configurations. In the remain-
ing configurations that use SWITCH_RF, software scheduling
introduces sufficient delay for context storing to complete.
Nevertheless, we implement this stalling mechanism in all
configurations employing SWITCH_RF to ensure correctness.
The location of the memory arbitration in the pipeline

also affects integration complexity, particularly in the pres-
ence of a cache. If arbitration occurs within the LSU, the
RTOSUnit can share the processor’s cache, potentially reduc-
ing context-switch latency for cached contexts, especially
with high-latency memory. However, this may also increase
worst-case latency and jitter due to additional cache miss
penalties. In turn, arbitration at the bus-level leaves more
request cycles available for the RTOSUnit, since some of
the processor’s requests now get handled by the cache, and
potentially reduces jitter by eliminating cache hit/miss vari-
ability. However, bus-level arbitration increases the mean
latency.
The remainder of this section discusses the integration

of the RTOSUnit into three representative RISC-V micro-
architectures of increasing complexity.

5.1 CV32E40P / Pipelined In-Order Processor
Among the evaluated cores, CV32E40P has the simplest ar-
chitecture. It features a 4-stage pipeline that executes in-
structions strictly in order, with no instruction reordering
or register renaming. As it lacks a cache, the LSU directly
interfaces with the memory bus, and arbitration requires
only simple multiplexers on the outgoing memory signals.

Although CV32E40P performs speculative instruction fet-
ches, branches are resolved early, and mispredicted instruc-
tions are never executed. Thus, no additional handling for
speculation is required. In configurations using the SWITCH_RF
instruction, no additional hazard logic is needed due to the
shallow pipeline and lack of speculation. The switch can
safely occur during operand reading.

5.2 CVA6 / Out-of-Order WB
Like CV32E40P, CVA6 issues instructions in-order and em-
ploys only limited speculation, enabling the RTOSUnit to
be integrated as a standard functional unit. However, unlike
CV32E40P, CVA6 incorporates register renaming to enable
out-of-order write-back. This renaming is handled inside
the scoreboard module, leaving the register file to contain
committed values only. Thus, the RTOSUnit can access the
architectural state directly, making register file replication
and multiplexing as straightforward as in CV32E40P.

Configurations using the SWITCH_RF instruction require ex-
tra logic to avoid hazards, as instructions prior to SWITCH_RF

Co-Exploration of RISC-V Processors and FreeRTOS Extensions for Lower Context-Switch Latency ASPLOS ’26, March 21–26, 2026, Pittsburgh, PA, USA.

must write to the ISR RF while those following SWITCH_RF al-
ready read from the APP RF, with both potentially coexisting
in the pipeline during a switch.
Despite CVA6 using a write-through cache, we chose to

arbitrate the memory at the bus level to reduce jitter.

5.3 NaxRiscv / Full Out-of-Order Execution
While integrations with CV32E40P and CVA6 were straight-
forward, adapting the RTOSUnit to the more complex Nax-
Riscv core required additional considerations, due to its fully
out-of-order execution model, aggressive speculative execu-
tion, and register renaming. As we will show, our RTOSUnit
can also be integrated with such a complex base core.
Unlike CVA6, which only reorders write-back, NaxRiscv

issues and executes instructions out-of-order and specula-
tively. Since custom instructions irrevocably affect RTOSUnit
state, they must execute strictly in program order and non-
speculatively. To this end, we introduced a queue that buffers
custom instructions (cf. Figure 6) while their final specu-
lation status (correctly speculated or misspeculated) is not
yet known. We preserve the program order by inserting the
custom instructions into this queue during the in-order de-
code stage (a). Once issued, the resolved argument values
(RS1, RS2) are added alongside the buffered instructions (b).
If the instruction turns out to be on a misspeculated path,
the queue is flushed (c). Otherwise, when the instruction
reaches the commit stage (d), it is passed to the RTOSUnit (e)
for execution, preserving program order and correctness. We
found a short queue size of just two entries to be sufficient
to prevent pipeline stalling due to a full queue. Alternatively,
one could stall the decode stage to ensure correct execu-
tion and ordering of our custom instructions. However, this
would also block all subsequent normal instructions, whereas
the addition of the queue allows for out-of-order execution
without stalling the pipeline.

Register renaming, as explained in Figure 7, enables Nax-
Riscv’s instruction reordering. In contrast to CVA6, renaming
is not concealed within a scoreboard. Instead, NaxRiscv is
equippedwith a larger physical register file capable of storing
more than the 31 writable architectural registers (a). In this
fashion, the register file is employed to store both the current
architectural state and as-yet uncommitted values. In order
to differentiate between the current state and uncommitted
results, as well as to translate an architectural register to the
correct physical register, NaxRiscv contains additional logic
(b) to keep track of the mapping between the architectural
and physical registers.
As explained in Subsection 4.2, for a context-switch, 29

architectural registers must be saved and restored frommem-
ory. Given the RTOSUnit’s micro-architecture independence,
it uses architectural register addresses (c), which must be
translated into physical addresses before accessing the phys-
ical register file. To this end, the existing translation logic is

tapped into, and the translated address is forwarded to the
register file.

To provide a dedicated register file for the ISR, the physical
register file and translation logic were duplicated (c). Notably,
NaxRiscv allocates physical registers only upon first write.
As a result, the alternate register file can be smaller than the
full 32 registers, depending on actual usage.

We found that as few as eleven registers were sufficient to
execute our FreeRTOS benchmarks. However, such a reduc-
tion in the register file size inherently imposes constraints on
the code that can be executed during an ISR. For maximum
generality, we thus chose a full-size (32 registers) alternate
register file for ISR use that still allows for arbitrary code
execution in the ISR.
Finally, the RTOSUnit’s memory interface must be arbi-

trated with the processor’s memory requests. Due to the
large and complex architecture of NaxRiscv, it is more likely
to be connected to high-latency memories, such as exter-
nal DRAM. Therefore, we extended the core’s LSU to al-
low the RTOSUnit to share the processor’s write-back cache
(cf. Figure 8). The existing LSU includes speculative load
(a) and store (b) queues, which are flushed on mispredic-
tion. Given the non-speculative nature of the RTOSUnit’s
requests, a dedicated queue, designated as ctxQueue (c), was
added here. This approach avoids alterations in the core’s
flushing logic and significantly simplifies the prioritization
of non-RTOSUnit memory requests (d).

The ctxQueue combines the functionalities of the load and
store queues. It supports out-of-order memory access and
uses a simple tag to indicate load or store (e). Each entry
contains address and data fields (f). Since the RTOSUnit
expects the read responses in the same order as the requests,
we use the data field to latch the cache’s result until it can
be forwarded to the RTOSUnit. To balance performance and
area, we evaluated different queue sizes and identified eight
entries as a Pareto-optimal solution. Further reducing the
queue size would negatively impact context-switch latency,
while larger sizes offer no performance gain.

Entires in the ctxQueue are allocated and freed in-order,
and the RTOSUnit issues load and store addresses in identical
order. Given this behavior, a load and store (or two stores)
to the same address could coexist in the queue only for a
queue depth of at least 32 entries. With our chosen depth of
eight, such aliasing cannot occur. Hence, store-to-load for-
warding and handling of aliasing stores within the ctxQueue

are unnecessary, ensuring safe out-of-order operation. These
assumptions may be violated when dirty bits are used, in
which case context loading is stalled until the ctxQueue is
empty.
The design assumes exclusive access to the context mem-

ory region by either the core or the RTOSUnit at any given
time. In consequence, no snooping or store-to-load forward-
ing needs to be implemented between the ctxQueue and
NaxRiscv’s existing queues. When both context loading and

ASPLOS ’26, March 21–26, 2026, Pittsburgh, PA, USA. Markus Scheck, Tammo Mürmann, & Andreas Koch

F D X W

RTOSUnit

CI

insert custom
instruction

provide
instruction
args

out-of-order

args
Instruction queueflush

Pipeline

isCommitted?

e d

a b

c

Figure 6. Integration of RTOSUnits’ custom instructions
into a full out-of-order core. The instruction queue is used
to collect out-of-order issued custom instructions (a)/(b) and
passes them in-order to the RTOSUnit (e).

Arch to Phys
Register Mapping

RTOSUnit
archAddr

data

physAddr
RF1

(APP)

0

63
... ...

RF2
(ISR)

0

31
... ...

b
a

c

d

d

Physical Registers

Figure 7. Overview of NaxRiscv’s renaming architecture.
The 64-entry physical register file (a) holds committed and
in-flight values. The register-mapping (b) translates architec-
tural to physical registers (e.g., for the RTOSUnit (c)) and dis-
ambiguates between committed and in-flight values. Green
shaded boxes indicate added logic for the ISR register file
and RTOSUnit integration.

storing are performed in hardware, only the RTOSUnit exclu-
sively accesses the reserved context memory. If only context
storing is enabled, the core loads contexts in software but
never writes to the context memory region. If the sched-
uler immediately switches back to the suspended task, the
SWITCH_RF instruction waits for all pending stores in the
ctxQueue to complete, ensuring that context saving finishes
before the register file is switched and the same context is
reloaded in software. After the SWITCH_RF instruction has
executed, a reschedule event is triggered, similar to a mispre-
diction, to re-execute the instructions following SWITCH_RF

on the switched register file.

6 Evaluation
We assess RTOSUnit’s performance, silicon area, and power
overheads as 22nm ASICs using the letter-based configu-
ration naming scheme introduced earlier: Store (S), Load
(L), Task Scheduling (T), Load Omission (O), Dirty Bits (D),
and Preloading (P). As before, (vanilla) refers to an unmod-
ified processor. Additionally, we provide a direct compar-
ison with related work (CV32RT) [3]. To this end, we have
re-implemented their CV32E40P-only solution for CVA6 and
NaxRiscv. In all three (CV32RT) variants, a dedicated mem-
ory port is used to save 16 of the 31 words of a context. For

Data
Cache read reqwrite req

loadQ

address

address
...

read respwrite resp

ctxQueue

LSU

...
address

write data

address
write data

storeQ

...
address

resp data

address
write dataS

...

L

RTOSUnit

a b
c

dd

e f

Figure 8. Overview of the required changes to NaxRiscv’s
LSU to arbitrate memory requests from the RTOSUnit. Green
blocks show added logic. The ctxQueue (c) handles memory
requests from the RTOSUnit, enabling out-of-order execu-
tion. Multiplexers (d) arbitrate between core and RTOSUnit,
prioritizing the core’s loadQ and storeQ.

NaxRiscv, the dedicated port bypasses the write-back data
cache. To prevent cache incoherence, the single cache line
containing the bypassed 16 words is explicitly invalidated.
The remaining context is saved in software and thus nor-
mally cached. We also tested flushing the cache and mark-
ing the context region as uncacheable; however, both ap-
proaches resulted in significantly worse latency compared
to the software-only (vanilla) solution. In contrast, all other
configurations of NaxRiscv arbitrate within the LSU, as de-
scribed in Subsection 5.3, and do not require any cache inval-
idation, while allowing the entire context to be cached. All
hardware list lengths are set to eight entries unless explicitly
mentioned otherwise.

6.1 Context-Switch Latency
We evaluate context-switch latency in RTL simulation using
20 iterations of all tests provided by the RISC-V port of RTOS-
Bench [4]. The ready and delay lists are configured with eight
entries each. The context load omission optimization (O), de-
scribed in Subsection 4.6, is enabled only for configurations
that use dirty bits (D) or preloading (P), as these techniques
already trade lower average latency for increased variability,
making them unsuitable for real-time applications that need
tighter time bounds. All cores are assumed to use tightly
coupled, single-cycle latency on-chip SRAM. Latency is mea-
sured from interrupt trigger to the execution of the mret

instruction, and jitter is reported as the difference between
maximum and minimum latencies. We report latency in cy-
cles rather than time at 𝑓𝑚𝑎𝑥 , as embedded systems typically
operate at much lower frequencies to optimize for area and
power consumption. The results are aggregated in Figure 9.

Co-Exploration of RISC-V Processors and FreeRTOS Extensions for Lower Context-Switch Latency ASPLOS ’26, March 21–26, 2026, Pittsburgh, PA, USA.

Figure 9. Context-switch latencies with different processors and configurations. Store (S), Load (L), Task Scheduling (T), Load
Omission (O), Dirty Bits (D), and Preloading (P). (CV32RT) corresponds to the approach by Balas et al. [3]. Δ is the jitter, as the
difference between the measured worst- and best-case switching latency. 𝜇 represents the average switching latency. Note that
some WCET values, marked with an 𝑥 , greatly exceed the y-axis limit.

Compared to software context switching (vanilla), the
approach of Balas et al. (CV32RT) achieves only modest aver-
age latency reductions, ranging from 3% to 12 %. In contrast,
our simplest configuration (S) yields substantially larger im-
provements, between 17% and 27%. This improvement is
likely attributable to our ability to overlap the entire context
saving with code execution, whereas the approach of Balas
et al. accelerates only half of the context saving in hardware.
In both cases, the jitter remains comparable.
Across all cores, offloading context storing and loading

to hardware (ST) reduces mean latency while maintaining
similar jitter. This offloading removes overhead from the
processor, while the inherently variable-latency scheduler
remains in software. Offloading scheduling alone to hard-
ware (T) significantly reduces jitter, especially on CV32E40P,
dropping from 188 to just 16 cycles, a reduction of more
than 90 %. Average latency is reduced by 23 %, 29 %, and 9%
for CV32E40P, CVA6, and NaxRiscv, respectively. Moving
both context-switching and scheduling (SLT) to hardware
minimizes both latency and jitter. On CV32E40P, jitter is elim-
inated entirely, while jitter on CVA6 and NaxRiscv is reduced
by up to 88%. The remaining jitter is likely due to micro-
architectural features like caches and speculative execution,
which cannot be directly influenced by our approach. In the
(SLT) configuration, context storing and restoring become
the primary bottlenecks, as the remaining ISR operations re-
quire fewer than 62 cycles, the minimum to fully hide context
handling.
Enabling dirty bits and load omission (SDLOT) yields a

modest reduction in mean latency at the expected cost of
increased jitter. For CV32E40P, some cases show latency be-
low 50 cycles. Omitting hardware scheduling in (SDLO), dirty
bits and load omission show no improvement over (SL), sug-
gesting that switching time is more influenced by software
scheduling than memory bandwidth. Jitter remains largely
unchanged, except for a minor deviation on NaxRiscv, likely

due to altered memory access patterns due to the dirty bit
optimization.
The fastest average switching latency is achieved using

our preloading strategy (SPLOT). Selecting the head of the
ready list proves to be a simple yet effective heuristic for
preloading the next context. Results fall into two clusters
of similar size: one with higher latency due to mispredicted
preloads, and another with lower latency from correctly
predicted contexts, where latency is reduced by up to 31
cycles compared to (SLT). For mispredicted preloads, (SPLOT)
performs comparably to (SLT).

6.2 Worst-Case Timing Guarantees
Due to our decoupled context-switch acceleration, theWCET
of the ISR is the maximum latency required either by the
RTOSUnit or the remaining software in the ISR. To calcu-
late the worst-case software latency, we analyze the longest
instruction path, assuming maximum latency for every in-
struction and accounting for pipeline flushes and stalls due
to dependencies. For software-scheduled setups, we assume
that eight tasks are delayed and must be moved to the ready
lists by the ISR. Note that larger task counts would yield even
higher worst-case latencies. For RTOSUnit FSM latency, we
analyze both the hardware and ISR code, considering stalls
from processor memory accesses.
Figure 9 shows the worst-case context-switch latencies

for CV32E40P. Our approach significantly reduces WCET:
for instance, the baseline shows a WCET of 1649 cycles,
while offloading context-switching (SL) or task scheduling (T)
reduces it to 1442 cycles and 202 cycles, respectively. When
offloading both to hardware (SLT), the WCET is reduced to
70 cycles, matching the measured context-switch latency.

Due to the complexity of CVA6 and NaxRiscv, WCET anal-
ysis for these cores is considered out of scope. Their latencies
are highly dependent on factors such as cache configurations

ASPLOS ’26, March 21–26, 2026, Pittsburgh, PA, USA. Markus Scheck, Tammo Mürmann, & Andreas Koch

and memory access patterns, which makes WCET predic-
tions potentially overly pessimistic. WCET analysis for out-
of-order cores remains an ongoing research topic. Li et al.
[13] propose a method for such an analysis, which requires
very precise modeling of the core’s pipeline.

6.3 ASIC
We assess the area and maximum frequency of our designs
using commercial ASIC tools (EDA), targeting a 22 nm tech-
nology node, and perform the implementation down to chip
layout for accurate power analysis. To ensure stable area
measurements, the target frequency is fixed at or above the
maximum frequency achievable by each unmodified base
core. Timing overheads for our RTOSUnit are reflected as
negative worst-case setup slack, as reported by the EDA tools.
These slowdowns are reported as 𝑓max drops. For NaxRiscv,
we manually instantiate optimized process-specific SRAM
macros to support caches and branch prediction tables effi-
ciently. However, their area is excluded from the reported
values to ensure a fair comparison, as the other cores are
evaluated without caches. Figure 10 shows the area of each
core alongside all supported RTOSUnit configurations, while
Figure 11 presents the corresponding maximum frequencies
achieved. Although these GHz frequencies are technically
achievable, frequencies in the hundreds-of-megahertz range
are more common in embedded systems, given their smaller
area and power / thermal envelopes.
Among the evaluated designs, CV32E40P is the smallest

core and thus most sensitive to area changes. The (S) config-
uration increases area by 21.9 %. This is only slightly larger
than the 21.2 % area increase observed for (CV32RT), while (S)
improves the average latency by 27 %, compared to (CV32RT)’s
12 %. Introducing hardware scheduling (T) adds no observable
area overhead compared to (vanilla). However, combining
scheduling with context-storing (ST) results in a 33% area
increase. Adding context-loading functionality (SLT) intro-
duces negligible additional overhead, while the integration
of dirty bits falls within the typical range of "heuristics noise"
of the algorithms in the EDA tools. The (SPLOT) configura-
tion, which implements context preloading via dedicated
registers, increases area by approximately 44%. Across all
configurations, except for (CV32RT), CV32E40P experiences
a frequency drop of roughly 15%, yet remains well above
typical operating frequencies for small embedded systems,
its primary target domain.
CVA6 and NaxRiscv, being larger cores, exhibit similar

but less pronounced trends. For CVA6, (S) results in a 3-
5 % area increase. For NaxRiscv, the overhead reaches up to
15 %, likely due to the duplication of register renaming logic
in addition to the alternate register file. (CV32RT) shows an
overhead of 2 % for CVA6. Overhead remains lower than for
CV32E40P, as routing congestion proves less critical during
synthesis. In contrast, NaxRiscv exhibits an area increase of
19 %, which exceeds that of the most advanced configuration

(SPLOT). This higher overhead stems from NaxRiscv’s use of
register renaming: snapshotting cannot just rely on static
addresses to access the register file and therefore requires
the costly addition of 16 extra read ports. As with CV32E40P,
enabling the (T) configuration does not introduce measurable
area overhead. In CVA6 and NaxRiscv, further acceleration
of scheduling and context switching increases area by up
to 8% and 13% respectively, rising to 14% and 15% when
preloading is also enabled.
The added pipeline hazard handling logic required for

the SWITCH_RF custom instruction in (S), (SD), (ST), and (SDT)
on CVA6 leads to area increases beyond the corresponding
configurations with hardware context loading support ((SL),
(SDLO)), (SLT), and (SDLOT)). NaxRiscv exhibits the opposite
behavior, where omitting hardware context loading results in
reduced area overhead, as those hazards are instead handled
through pipeline rescheduling.
CVA6 experiences a slight frequency drop of around 8%

across configurations, while NaxRiscv maintains stable fre-
quency throughout, with the exception of the (SPLOT) con-
figuration, which exhibits a modest 4 % drop.
We also evaluate how area overhead scales with increas-

ing lengths of the ready and delay lists. We synthesize the
CV32E40P core with hardware scheduling only (T), varying
the number of slots in both lists while keeping them equal in
length. Figure 12 presents the absolute area across different
list sizes. A list length of zero denotes the unmodified core.
While minor fluctuations appear, especially at smaller list
sizes, most likely due to "heuristics noise", the area increases
approximately linearly, reaching a 14 % overhead at 64 slots.

Lastly, we evaluate the power impact of our RTOSUnit. We
perform highly accurate gate-level simulations on the actual
chip layouts for the mutex_workload test on all cores running
at 500MHz. This approach is chosen because it includes the
precise signal transitions of an actual workload execution,
and not just estimated average toggle rates, and thus reflects
a realistic operating scenario. Using the resulting logic wave-
forms and implemented ASIC designs, we derive the average
power consumption using industry-standard commercial
power analysis EDA tools. The results, shown in Figure 13,
reflect average power draw over the full workload duration,
rather than isolating the individual context-switching phases.
This approach is motivated by the fact that total power con-
sumption across the processor’s operation, not just during
context switches, influences implementation decisions in
low-power designs. For NaxRiscv, we excluded the caches’
SRAM power draw from reports to ensure a fair comparison.

As expected for the 22 nm technology node (and below!),
we observe a strong correlation between area and power
draw, primarily due to the impact of static power draw.
For CV32E40P and CVA6, (CV32RT) exhibits the lowest addi-
tional power consumption. In the case of CVA6, the power
consumption of the (S) configuration is nearly identical to
that of (CV32RT), while providing a substantial improvement

Co-Exploration of RISC-V Processors and FreeRTOS Extensions for Lower Context-Switch Latency ASPLOS ’26, March 21–26, 2026, Pittsburgh, PA, USA.

Figure 10. Normalized ASIC area w.r.t. the baseline of the processors under different RTOSUnit configurations. Store (S), Load
(L), Task Scheduling (T), Load Omission (O), Dirty Bits (D), and Preloading (P). (CV32RT) corresponds to the approach by Balas et
al. [3]. The absolute area is reported above the bars.

Figure 11. ASIC 𝑓𝑚𝑎𝑥 of the base processors under different
configurations.

Figure 12. ASIC area scaling with increasing scheduler list
length.

in context-switch latency. For NaxRiscv, the scheduling-
only configuration (T) incurs the lowest additional power
consumption, with less than 2mW. With the exception of
NaxRiscv, the highest power draw is observed for the (SPLOT)
configuration. For NaxRiscv, however, the (CV32RT) config-
uration exhibits the highest power consumption, as it also
results in the largest area overhead. While CV32E40P’s rel-
ative power increases by up to 72%, the absolute increases
remain small. CVA6 shows a similar trend, with a relative

Figure 13. Power estimation under different RTOSUnit con-
figurations.

power increase of up to 33 %. Due to NaxRiscv’s higher base-
line power usage, the relative increase is more modest, up to
13 % (excluding (CV32RT)).

6.4 Configuration Selection
The choice of configuration depends on the relative impor-
tance of latency, jitter, and area overhead in the target appli-
cation. No single configuration dominates across all metrics;
instead, each represents a different point in the design space.

The (SLT) configuration emerges as a strong all-round solu-
tion. It provides substantial improvements in average latency
and jitter while maintaining predictable behavior across
workloads. However, these benefits come at a noticeable

ASPLOS ’26, March 21–26, 2026, Pittsburgh, PA, USA. Markus Scheck, Tammo Mürmann, & Andreas Koch

area cost, which may limit their applicability in highly area
(cost)-constrained systems. When average context-switch
latency is the primary optimization goal and area overhead
is only of secondary concern, the (SPLOT) configuration is the
preferred choice. By enabling context preloading, it achieves
the lowest average latency among all evaluated designs, al-
beit with the highest area and power overheads.

For systems where silicon area is the dominant constraint,
the scheduling-only configuration (T) represents an attractive
option. It introduces virtually no area overhead while still
providing meaningful reductions in jitter and reasonable
improvements in latency. This makes (T) particularly well
suited for cost-sensitive embedded designs.

The (SL) configuration occupies an intermediate position
between (T) and (SLT). Compared to (T), it offers improved
average latency at the cost of a moderate area increase, while
jitter remains largely unchanged. Relative to (SLT), it reduces
area overhead but also sacrifices some of the benefits in jitter
reduction, making it suitable when latency improvements
are desired without fully committing to the cost of the more
comprehensive solution.

Overall, these configurations allow designers to trade off
area, latency, and jitter in a controlled manner, enabling
adaptation to a wide range of embedded real-time use cases.

7 Conclusion and Future Work
We introduced the RTOSUnit, a novel hardware accelera-
tion unit for tightly-coupled context-switching acceleration
in real-time systems. Our approach is portable, as demon-
strated by integration into three RISC-V processors of vary-
ing complexity. By its configurable architecture, the RTO-
SUnit enables fine-grained trade-offs between area, mean
context-switch latency, and jitter, making it easily adaptable
for different application requirements.

Our most advanced hard real-time-focused configuration
(SLT), which includes full context-switching and scheduling
acceleration, eliminates jitter entirely on some processors
and achieves a mean latency reduction of up to 69%, with
an area overhead of 31 %. Meanwhile, our most area-efficient
variant (T) has costs within EDA tool "heuristics noise", while
reducing jitter by 91% and lowering mean latency by 23%.
Across all configurations, operational frequencies remain
within practical bounds for embedded deployments.

While our RTOSUnit provides significant improvements
for single-core FreeRTOS systems, its current design is limited
to uniprocessor configurations. Future work could explore
support for multi-core systems, extending RTOSUnit’s appli-
cability to multiprocessing scenarios.

Additionally, hardware acceleration of common synchro-
nization primitives, such as the semaphores or mutexes ex-
amined in prior work, could further offload the processor
and reduce overhead in coordination-intensive workloads.

Similarly, context storing and loading could be extended to
support floating-point or vector registers.

Finally, although similar in architecture, supporting addi-
tional real-time operating systems such as Zephyr [28] or
ChibiOS [21] would further broaden the scope and adoption
potential of the design in embedded environments.

Acknowledgments
We thank our reviewers for their valuable feedback. We
acknowledge the financial support by the German Federal
Ministry of Research, Technology and Space in the project
“Scale4Edge” (grant: 16ME0139).

AI tools were used for language refinement.

References
[1] David Andrews, Wesley Peck, Jason Agron, Keith Preston, Ed Komp,

Mike Finley, and Ron Sass. 2005. hthreads: A hardware/software
co-designed multithreaded RTOS kernel. In 2005 IEEE Conference on
Emerging Technologies and Factory Automation, Vol. 2. IEEE, 8–pp.

[2] Arm Ltd. 2019. Registers in AArch32 state. https://developer.arm.com/
documentation/100076/0200/instruction-set-overview/overview-of-
aarch32-state/registers-in-aarch32-state. Accessed: 2025-08-01.

[3] Robert Balas, Alessandro Ottaviano, and Luca Benini. 2024. CV32RT:
Enabling Fast Interrupt and Context Switching for RISC-V Micro-
controllers. IEEE Transactions on Very Large Scale Integration (VLSI)
Systems 32, 6 (2024), 1032–1044. doi:10.1109/TVLSI.2024.3377130

[4] Brannium. 2024. RTOSBench. https://github.com/Brannium/
RTOSBench. Accessed: 2025-03-26.

[5] Sathish Chandra, Francesco Regazzoni, and Marcello Lajolo. 2006.
Hardware/software partitioning of operating systems: A behavioral
synthesis approach. In Proceedings of the 16th ACM Great Lakes sym-
posium on VLSI. 324–329.

[6] Elham Cheshmikhani and Hamed Farbeh. 2025. Interrupt Caching:
A Hardware-Assisted Interrupt Handling to Enhance System Respon-
siveness. IEEE Access (2025).

[7] Intel Corporation. 1986. 80386 Programmer’s Reference Manual. Section
7.5: Task Switching.

[8] Advanced Micro Devices. 2006. AMD64 architecture programmer’s
manual volume 2: System programming. Section 12.3: Hardware Task-
Management in Legacy Mode.

[9] Eugen Dodiu and Vasile Gheorghita Gaitan. 2012. Custom designed
CPU architecture based on a hardware scheduler and independent
pipeline registers—Concept and theory of operation. In 2012 IEEE
International Conference on Electro/Information Technology. IEEE, 1–5.

[10] Michael Gautschi, Pasquale Davide Schiavone, Andreas Traber, Igor
Loi, Antonio Pullini, Davide Rossi, Eric Flamand, Frank Gurkaynak,
and Luca Benini. 2017. Near-Threshold RISC-V Core With DSP Ex-
tensions for Scalable IoT Endpoint Devices. doi:10.1109/TVLSI.2017.
2654506

[11] Winfried Grunewald and Theo Ungerer. 1996. Towards extremely fast
context switching in a block-multithreaded processor. In Proceedings
of EUROMICRO 96. 22nd Euromicro Conference. Beyond 2000: Hardware
and Software Design Strategies. IEEE, 592–599.

[12] Intel Corporation. 2023. Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 3A: System Programming Guide, Part 1.
Section 7.7: Task Management in 64-Bit Mode.

[13] Xianfeng Li, Abhik Roychoudhury, and Tulika Mitra. 2006. Modeling
out-of-order processors for WCET analysis. Real-Time Systems 34, 3
(2006), 195–227.

[14] L. Lindh. 1991. Fastchart-a fast time deterministic CPU and hardware
based real-time-kernel. In Proceedings. EUROMICRO ‘91 Workshop on

https://developer.arm.com/documentation/100076/0200/instruction-set-overview/overview-of-aarch32-state/registers-in-aarch32-state
https://developer.arm.com/documentation/100076/0200/instruction-set-overview/overview-of-aarch32-state/registers-in-aarch32-state
https://developer.arm.com/documentation/100076/0200/instruction-set-overview/overview-of-aarch32-state/registers-in-aarch32-state
https://doi.org/10.1109/TVLSI.2024.3377130
https://github.com/Brannium/RTOSBench
https://github.com/Brannium/RTOSBench
https://doi.org/10.1109/TVLSI.2017.2654506
https://doi.org/10.1109/TVLSI.2017.2654506

Co-Exploration of RISC-V Processors and FreeRTOS Extensions for Lower Context-Switch Latency ASPLOS ’26, March 21–26, 2026, Pittsburgh, PA, USA.

Real-Time Systems. 36–40. doi:10.1109/EMWRT.1991.144077
[15] Lennart Lindh and Frank Stanischewski. 1991. FASTCHART-Idea and

Implementation. In Proceedings of the 1991 IEEE International Confer-
ence on Computer Design on VLSI in Computer & Processors (ICCD ’91).
IEEE Computer Society, USA, 401–404.

[16] Microchip Technology Inc. 2015. PIC32MZ Embedded Connectivity
with Floating Point Unit (EF) Family Data Sheet. Accessed: 2025-08-01.

[17] Andrew Morton and Wayne M. Loucks. 2004. A hardware/software
kernel for system on chip designs. In Proceedings of the 2004 ACM
Symposium on Applied Computing (Nicosia, Cyprus) (SAC ’04). As-
sociation for Computing Machinery, New York, NY, USA, 869–875.
doi:10.1145/967900.968077

[18] Takumi Nakano, Yoshiki Komatsudaira, Akichika Shiomi, and Masa-
haru Imai. 1999. Performance evaluation of STRON: A hardware
implementation of a real-time OS. IEICE transactions on fundamen-
tals of electronics, communications and computer sciences 82, 11 (1999),
2375–2382.

[19] Antti Nurmi, Abdesattar Kalache, Henri Lunnikivi, Per Lindgren, and
Timo D Hämäläinen. 2025. Efficient and predictable context switching
for mixed-criticality and real-time systems. IEEE Transactions on Very
Large Scale Integration (VLSI) Systems (2025).

[20] Nader I Rafla and Deepak Gauba. 2011. Hardware implementation
of context switching for hard real-time operating systems. In 2011
IEEE 54th International Midwest Symposium on Circuits and Systems
(MWSCAS). IEEE, 1–4.

[21] Giovanni Di Sirio. 2025. ChibiOS Real-Time Operating System. https:
//www.chibios.org/. Accessed: 2025-05-10.

[22] Jeffrey S Snyder, David B Whalley, and Theodore P Baker. 1995. Fast
context switches: Compiler and architectural support for preemptive
scheduling. Microprocessors and Microsystems 19, 1 (1995), 35–42.

[23] SpinalHDL. 2025. NaxRiscV. https://github.com/SpinalHDL/NaxRiscv.
Accessed: 2025-03-26.

[24] Frank Stanischewski. 1993. FASTCHART-Performance, Benefits and
Disadvantages of the Architecture. In Fifth Euromicro Workshop on
Real-Time Systems. IEEE Computer Society, 246–247.

[25] Melissa Vetromille, Luciano Ost, César AM Marcon, Carlos Reif, and
Fabiano Hessel. 2006. RTOS scheduler implementation in hardware
and software for real time applications. In Seventeenth IEEE Interna-
tional Workshop on Rapid System Prototyping (RSP’06). IEEE, 163–168.

[26] Ionel Zagan and Vasile Gheorghit,ă Găitan. 2022. Designing a Custom
CPU Architecture Based on Hardware RTOS and Dynamic Preemptive
Scheduler. Mathematics 10, 15 (2022). doi:10.3390/math10152637

[27] Florian Zaruba and Luca Benini. 2019. The Cost of Application-Class
Processing: Energy and Performance Analysis of a Linux-Ready 1.7-
GHz 64-Bit RISC-V Core in 22-nm FDSOI Technology. doi:10.1109/
TVLSI.2019.2926114

[28] Zephyr Project. 2025. Zephyr Real-Time Operating System. https:
//www.zephyrproject.org/. Accessed: 2025-05-10.

[29] Xiangrong Zhou and Peter Petrov. 2006. Rapid and low-cost context-
switch through embedded processor customization for real-time and
control applications. In Proceedings of the 43rd annual Design Automa-
tion Conference. 352–357.

https://doi.org/10.1109/EMWRT.1991.144077
https://doi.org/10.1145/967900.968077
https://www.chibios.org/
https://www.chibios.org/
https://github.com/SpinalHDL/NaxRiscv
https://doi.org/10.3390/math10152637
https://doi.org/10.1109/TVLSI.2019.2926114
https://doi.org/10.1109/TVLSI.2019.2926114
https://www.zephyrproject.org/
https://www.zephyrproject.org/

	Abstract
	1 Introduction
	2 Related Work
	3 HW/SW Platform Selection
	4 RTOSUnit Implementation
	4.1 Baseline (vanilla)
	4.2 Context Storing (S)
	4.3 Context Loading (SL)
	4.4 Task Scheduling (T)
	4.5 Dirty Bits (D)
	4.6 Load Omission (O)
	4.7 Preloading (P)

	5 RTOSUnit Integration
	5.1 CV32E40P / Pipelined In-Order Processor
	5.2 CVA6 / Out-of-Order WB
	5.3 NaxRiscv / Full Out-of-Order Execution

	6 Evaluation
	6.1 Context-Switch Latency
	6.2 Worst-Case Timing Guarantees
	6.3 ASIC
	6.4 Configuration Selection

	7 Conclusion and Future Work
	Acknowledgments
	References

