Skip to main content.

Welcome to the web-pages of the Embedded Systems and Applications Group!

While part of the Computer Science department, much of our work occurs at the level of the hardware-software interface. Our current research focus is on how to efficiently provide computing performance in situations where the capabilities of a standard microprocessor do not suffice, or its energy requirements would be excessive.

As an alternative, we propose adaptive computers: combining a smaller, low-power microprocessor with a highly optimized reconfigurable compute unit. The structure of the latter can then be optimally adapted to the precise needs of the current application, and thus provide the required compute power with reduced energy consumption.

To achieve this goal, we realize hardware demonstrators for such computer architectures (including the required operating system ports), and evaluate these using practical applications from a variety of fields. After very promising results, we have now concentrated on making the potential of such computers available even to developers who lack the skills in hardware design that are still required to program such systems. To this end, we have been working on a complete compile flow for partitioning a program in a software high-level programming language for separate execution on the two compute units. The part assigned to the reconfigurable compute unit is then processed further using techniques from hardware synthesis and physical chip design (mapping, placement, routing).

Many of our research efforts rely on support by motivated students with appropriate skills and experience. Thus, our group also develops lectures and labs on the wide range of topics listed above.