While part of the Computer Science department, much of our work occurs at the level of the hardware-software interface. Our current research focus is on how to efficiently provide computing performance in situations where the capabilities of a standard microprocessor do not suffice, or its energy requirements would be excessive.

As an alternative, we propose adaptive computers: combining a smaller, low-power microprocessor with a highly optimized reconfigurable compute unit. The structure of the latter can then be optimally adapted to the precise needs of the current application, and thus provide the required compute power with reduced energy consumption.

To achieve this goal, we realize hardware demonstrators for such computer architectures (including the required operating system ports), and evaluate these using practical applications from a variety of fields. After very promising results, we have now concentrated on making the potential of such computers available even to developers who lack the skills in hardware design that are still required to program such systems. To this end, we have been working on a complete compile flow for partitioning a program in a software high-level programming language for separate execution on the two compute units. The part assigned to the reconfigurable compute unit is then processed further using techniques from hardware synthesis and physical chip design (mapping, placement, routing).

Many of our research efforts rely on support by motivated students with appropriate skills and experience. Thus, our group also develops lectures and labs on the wide range of topics listed above.


  • ESA’s work on oneAPI and AutoDock-GPU is featured on Intel Community Blog

    A recent post at https://community.intel.com features an article about our latest work levering oneAPI for achieving a SYCL-enabled version of the AutoDock-GPU molecular docking application.

    The post describes our collaboration with Intel for migrating AutoDock-GPU from CUDA to SYCL, and thus, freeing this code-base from lock to a specific GPU vendor. Moreover, it highlights that our work 1) provides a detailed process reference for CUDA-to-SYCL migration and 2) evaluates the SYCL code-base of AutoDock-GPU on Intel Data Center Max 1550 GPU (code-named Ponte Vecchio), 4th Gen Intel Xeon Scalable Processor, as well as NVIDIA GPU.

    Enjoy reading the full post AutoDock-GPU: SYCL Enabled Molecular Screening for Science and Medicine!

    By Dr.-Ing. Leonardo Solis-Vasquez, 21.08.2023

  • ESA Team achieved 10th place at Meet And Move Ultra Marathon

    After winning the first place in the TU Darmstadt Meet And Move Ultra Marathon lottery back in 2022, the ESA team proudly reached the 10th place in this year’s competitive run. Our team was supported by multiple ESA-external runners. Torben Kalkhof was our fastest runner with 18.33 minutes.

    alt text

    By Christoph Spang, 23.05.2023

  • Best Paper Award at DASIP 2023

    Our work TaPaFuzz - An FPGA-Accelerated Framework for RISC-V IoT Graybox Fuzzing has won the Best Paper Award at DASIP 2023. We are extremely happy. Thanks to the committee for selecting our work!

    By Florian Meisel, 20.01.2023

  • Invited Talk at Global RISC-V Summit 2022

    After a highly competitive selection process (13% acceptance rate), ESA researchers Mihaela Damian, Julian Oppermann, Christoph Spang and Andreas Koch were chosen for presenting their SCAIE-V scalable and portable interface for adding custom instructions to RISC-V processors at the 2022 Global RISC-V Summit.

    The RISC-V Summit is the key global event for presenting advances around the open RISC-V processor instruction set architecture (ISA), which is shaping up to be a viable alternative to the existing proprietary solutions in a number of application domains.

    The SCAIE-V interface developed by the ESA Group provides a standardized way to extend the base RISC-V instruction set with specialized instructions, for example, for application domains such as machine learning, IT security, or digital signal processing. This specialization can be used to improve the performance and/or energy efficiency of the customized processors. Using SCAIE-V, these specialized instructions can easily be attached to different base processor cores, with the interface automatically scaling to the needs of the actual custom instructions used.

    A video of the presentation is available, which is based on an earlier research paper presented at the DAC 2022 conference.

    alt text

    By Prof. Dr-Ing. Andreas Koch, 4.01.2023

  • Best Paper Award at ICACGA 2022 in Denver

    Our work GAAlign: Robust Sampling-based Point Cloud Registration using Geometric Algebra has won a Best Paper Award (GA Applied to Computational Performance) at ICACGA 2022. We are extremely happy. Thanks to the committee for selecting our work!

    By Dr.-Ing. Florian Stock, 5.10.2022

  • ESA wins Best Paper Award at FPL 2022

    We are glad that our paper “DeLiBA: An Open-Source Hardware/Software Framework for the Development of Linux Block I/O Accelerators” wins the best paper award at FPL 2022 conference. The award was presented during the banquet on Tuesday 30th August by the Chair of the Best Paper Award Committee at Belfast, UK. Congratulations to the other nominees for their excellent research work.

    By Babar Khan, 8.09.2022

You can find more news in our archive.